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I. Overview 

I.a. History of and Need for MIDI, Purpose of this Document 
The Medical Imaging De-Identification (MIDI) project has been established by National Cancer 
Institute (NCI) to assess the feasibility of a tool to semi-automate the process of de-identifying 
medical images. The need for a tool such as MIDI has been discussed in the final report of the 
National Institutes of Health (NIH) Medical Imaging Working Group (MIWG), and it is one of its 
recommendations that NIH conduct a pilot to address this need. It is also discussed in further 
detail in the Objective section below.  

The MIDI project has been performed in four main phases over the past four years. Phase 1 
established the initial feasibility of a de-ID tool using the Google Cloud Platform’s Healthcare 
API de-identification service. In Phases 1 and 2, the MIDI pipeline was set up and tested using a 
synthetic dataset created by UAMS. Based on the findings of Phases 1 and 2, Phase 3 was 
launched to implement a post-processing step in the MIDI pipeline in order to rectify many of the 
identified errors in Phases 1 and 2. It still utilized the same synthetic dataset from Phases 1 and 
2. The results have been reported at the American Association for Cancer Research (AACR)13. 
Finally, Phase 4 moved from synthetic to real (full PHI/PII) imaging data, to conduct a realistic 
test of the pipeline. The resulting final tool, and its final results, as well as descriptions of the 
datasets, methods, and a discussion, are all included in this report. 

This document has been created as part of Phase 4 of the MIDI project at the NCI. It is intended 
to provide a comprehensive overview of the activities completed during the MIDI Phase 4 
Google Professional Services Organization (PSO) Engagement, and the status of the MIDI 
pipeline overall including its performance. 

I.b Objective 
With medical images now almost universally digitized and shared across health systems, proper 
data handling and patient privacy preservation are imperative.  Handling and exchanging 
medical images present various challenges due to the Protected Health Information (PHI) and 
Personally Identifiable Information (PII) that can be embedded in the images either within the 
images themselves, as pixel data, or within textual metadata headers. Due to these challenges 
and the importance of ensuring patient privacy, concerted efforts have been made to develop 
and evaluate accurate and high throughput solutions for biomedical imaging de-identification. 
  
To address the challenges posed by embedded PHI/PII, Digital Imaging and Communications in 
Medicine (DICOM) was established as an international standard for the communication and 
management of medical imaging information and related data.  DICOM defines the formats for 
medical images that can be exchanged with the data and quality necessary for clinical use, 
including most radiology, cardiology imaging, and radiotherapy devices (e.g., X-ray, CT, MRI, 
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and ultrasound). DICOM is also becoming more widely adopted within other medical domains, 
such as ophthalmology and dentistry. The thirty-year-old standard provides mechanisms to 
handle different writing systems, character sets, languages, and various addresses and legal 
name structures. It supports a multitude of biomedical imaging workflows, processes, and 
policies for different geographic regions, medical specialties, and local practices. Furthermore, 
the DICOM standard includes localization through procedural code sets and selective data 
element usage, enabling data from different geographic regions to meet the requirements of 
national or local health workflow policies. 
 
Given the importance of these standards, especially in the context of public datasets, 
deidentification and adherence to DICOM standards are crucial to ensure patient privacy and 
data integrity. Public datasets often serve as valuable resources for research and development 
in medical imaging, making the proper handling and deidentification of PHI/PII essential to 
maintain confidentiality and comply with regulatory requirements. For instance, NCI’s Imaging 
Data Commons (IDC), a cloud-based repository established in 2020, provides access to 
deidentified imaging data from eight different projects. The Cancer Imaging Archive (TCIA), an 
open-source imaging data resource established in 2011, is one of the main resources that 
populate IDC and contains tens of millions of biomedical images.  With the ever-growing volume 
of imaging data, the standard process of removing sensitive information from an image, which 
historically involved manual inspection and editing of data, has become infeasible. Furthermore, 
applying these standardization practices to IDC and TCIA image data at such high throughputs 
is expensive and prone to error. 
 
To make these processes more scalable, the development of reliable and robust automated 
image de-identification methodologies is essential. Approaches that automatically detect and 
remove PHI/PII would greatly benefit these already large and growing biomedical imaging 
databases. Furthermore, automated pipelines that integrate advanced machine learning (ML) 
and artificial intelligence (AI) can help improve de-identification accuracy and expedite the 
process, allowing image data to be shared more quickly. Ideally, the approach would also 
balance the removal of information that may contain sensitive details, to ensure privacy, with the 
retention of medical information that may be critical within a given research or clinical context.  
 
De-identification of medical images in the DICOM format is a multi-step process that involves 
inspecting pixel data and metadata for PHI/PII where metadata elements values are either 
removed, kept, or cleaned based on the DICOM Security and System Management profiles.  
 
MIDI offers an automated solution for de-identification of medical images that leverages Google 
Cloud Platform’s (GCP) Healthcare Application Programming Interface (API), offering a secure, 
configurable, and scalable system for large datasets. To build the MIDI pipeline, the team had to 
define the processes, scripts, and configuration settings of the Google Healthcare API that could 
be used to perform de-identification of DICOM datasets in a manner compliant with the PS3.15 
Attribute Confidentiality Profile.  MIDI Phase 1 focused solely on native Healthcare API 
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configurations but encountered several recurrent failure types. These errors stemmed from 
either unavailable options within the GCP platform or the application of algorithms not trained on 
specific PHI, such as abbreviated institution names. To address these recurrent error types, in 
Phase 3 we integrated customized post-processing scripts into the MIDI pipeline, resulting in a 
more robust and accurate approach. MIDI offers several key advancements over current state-
of-the-art, including: 
 

● Built within a secure cloud framework ensuring that PHI/PII is protected throughout the 
de-identification process. 

● Novel cloud-based approach allows for scalable and efficient processing of large 
datasets. 

● Implemented Cloud Functions from GCP to automate the pipeline without the need to 
manually trigger each step of the process. 

● Alleviated limitations within the Healthcare API through use of regular expressions to 
alter specified data elements. 

● Integrated custom post-processing scripts that address specific PHI-related issues not 
covered by standard algorithms leading to enhanced error handling. 

 
Taken together, MIDI harnesses the established GCP Healthcare API platform and customized 
post-processing scripts to offer a more robust and accurate approach for biomedical image de-
identification. Importantly, the approach integrates easily with ‘human-in-the-loop’ spot-
checking, which could further improve the reliability of the de-identification process and enable 
progressive optimization of the workflow based on human feedback. 
 
The Google Phase 4 PSO Engagement (MIDI Phase 4) was conducted to work in partnership 
with NCI, Deloitte, and key researchers from University of Arkansas for Medical Sciences 
(UAMS), Ellumen, and Leidos to assess and improve the performance of the MIDI pipeline for 
the de-identification of medical images, including the use of real (full PHI/PII) data. 
 
For Phase 4, synthetic MIDI datasets and a real dataset were provided by UAMS that followed 
the DICOM standards. More detailed information about the datasets is provided below. 

II. Background 
Medical imaging data is an important tool for the diagnosis, treatment, and research of 
diseases. Sharing of imaging data among scientists can help accelerate research and 
discovery. Before images can be shared, however, all metadata and pixel data must be de-
identified to comply with Health Insurance Portability and Accountability Act (HIPAA), other 
privacy regulations, and IRB requirements. Manual de-identification by humans is a repetitive 
and laborious process which does not scale with the rapid growth in biomedical data. Machine 
learning (ML) and deep learning (DL) algorithms, such as convolutional neural networks (CNNs) 
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for images1 or Recurrent Neural Networks (RNNs) for text2, can be used to automate the 
process of removing sensitive information from biomedical data. 
 
Publicly accessible image sharing repositories, such as The Cancer Imaging Archive (TCIA)3 
stand to benefit from automated de-identification to reduce the expense and improve the 
performance of maintaining them. TCIA includes cancer imaging data in Digital Imaging and 
Communications in Medicine (DICOM) format from various types of radiology modalities (CT, 
MRI, X-Ray, etc.). DICOM is the international standard format for acquiring, storing, processing, 
transferring, and visualizing medical imaging data in clinical environments4. However, for 
medical information to be distributed or shared for collaborative research purposes data and 
metadata must be reliably purged of identifiable information. Protected Health Information (PHI) 
and Personally Identifiable Information (PII) can be embedded in the pixel data of the images 
themselves as well as in the metadata (DICOM header). Maintainers of repositories, like TCIA, 
use the DICOM standard requirements for de-identification (specifically PS3.15 Appendix E) as 
a baseline for which elements are labeled as PHI/PII5. This standard provides instructions for 
selecting elements which are expected to contain PHI/PII, so that they can formulaically be 
removed (or replaced). A balance must be struck between removing information that is critical 
for interpreting the images within a certain research context, especially when the secondary re-
use purpose is unanticipated6. Therefore, the DICOM standard describes a ‘profile with multiple 
options’ that range from being maximally restrictive (the ‘basic’ profile) to retaining more 
information, as well as providing for more complex “cleaning” of unstructured text, pixel data and 
other forms of data. 
 
With an ever-growing volume of imaging data becoming available, a human manual approach to 
de-identification becomes infeasible, more expensive, and is always prone to error7. An 
automated and cloud-based system that employs ML/AI can help improve the de-identification 
accuracy, scale with datasets, and expedite the process allowing image data to be shared 
amongst researchers sooner. A recent study showed that fully customized systems can remove 
97-99% of PHI/PII from text, while performance of off-the-shelf systems varied by dataset, with 
performance mostly above 90% sensitivity8. By contrast, human performance was evaluated at 
81% in another study9. 
 
One approach  for cloud-based de-identification of medical images is the Google Cloud 
Platform’s (GCP) Healthcare API10. Based on Google’s Data Loss Prevention (DLP)11 service, it 
offers a configurable system that is scalable for large and growing datasets. It uses a 
combination of hardcoded rules and ML models including Convolutional Neural Networks 
(CNNs) and Recurrent Neural Networks (RNNs) for identifying PHI/PII in pixel data and DICOM 
header data. Post-processing scripts can also be included using cloud native functions for 
further improvements in accuracy. 
 
The purpose of the MIDI Project was to develop a scalable, automated (or semi-automated), 
AI/ML-enabled and cloud-based image de-identification pipeline to provide service to large 
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public repositories, such as the NCI Imaging Data Commons (IDC). This report describes Phase 
4 of the MIDI Project that continues the previous work12, 13 in improving the deidentification 
pipeline developed in Phases 1-3. Phase 4 tests primarily the MIDI pipeline developed in 
Phases 1-3 on a real PHI/PII dataset rather than just a synthetic dataset. During Phase 4, while 
setting up a secure PHI/PII computing environment, issues identified during retesting on the 
synthetic dataset were addressed. In addition, some modifications were made after testing on 
the test dataset used for the MIDI-B challenge25. Finally, some issues were only discovered 
during testing with the real PHI/PII dataset and were addressed as they were discovered. Figure 
1 describes the flow of data for this phase of the project. There were two flows that MIDI was 
evaluated on. Flow 1 (red arrow) was using the Source dataset (see below for a description of 
all datasets) for the real PHI/PII dataset which came directly from the UAMS PACS. Flow 2 was 
using the Source dataset after being passed through the Clinical Trial Processor (CTP), 
configured with a UAMS-defined script that follows the DICOM PS3.15 profile, which performs 
an initial level of de-identification produced the “CTP” dataset. “CTP” is the dataset TCIA uses 
as input to its own more thorough human-drive de-identification and curation process (“TCIA 
Curated” or “UAMS” dataset).  The TCIA curated “UAMS” dataset (in purple), assumed to 
conform to current best practices, was then used as the basis for determining how well MIDI 
performed in the comparison.  In summary, MIDI was evaluated in two flows: directly working on 
the “Source” dataset, or indirectly working on the “CTP” dataset as input. In both cases, the 
TCIA curated “UAMS” dataset was used as the answer key to determine how well MIDI 
performed. 

 
Figure 1. The evaluation flows for the Medical Image De-Identification (MIDI) project phase 4 
with real PHI/PII. 
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II.a Timeline 
Figure 2 shows the timeline of the MIDI project over the past 4 years. 

 

Figure 2. Timeline of the Medical Image De-Identification (MIDI) project. 

II.b Previous Phases of the MIDI Project 
Previous phases of the MIDI project defined processes, scripts, and configuration settings of the 
Google Healthcare API that can be used to perform de-identification of DICOM datasets in a 
manner that conforms with the PS3.15 Attribute Confidentiality Profile.  
 
The focus of the first two phases was to use only the configurations provided by the Healthcare 
API and not to include any additional outside scripts in order to keep the platform GCP native.  
Phase 1 focused on the development of a basic pipeline for customized deID of images, 
following TCIA best practices, and Phase 2 focused on further optimization based on findings 
during Phase 1. 
 
The UAMS curated synthetic dataset was used for all runs during these phases17. Accuracy of 
the MIDI pipeline was measured against TCIA’s standard tools and procedures for de-
identification on a 21-patient dataset, consisting of a total of 1,693 individual images. Metrics 
included correct detection of all PHI/PII data and correct actions taken (e.g., remove, encrypt, or 
otherwise obscure). Throughput was also measured. 

Throughput was measured at 22.0 images per second over 10 runs with images stored in a 
single region (us-east4). The MIDI pipeline’s accuracy, calculated as number of correct actions 
taken per total number of actions required to be taken according to TCIA for DICOM headers 
and pixel data was 98.7%, accurately detecting dates, addresses, phone numbers, unique 
identifiers, names, and other common identifying information.  

● The most common PII that the MIDI Phase 1/2 pipeline failed to remove were special 
cases that included uncommon non-western names (e.g., Bhavani) or names with 
symbols, dates in string data types that were mistaken for other IDs, patient IDs, and 
abbreviated institution names.  

● Private Creator data elements consistently failed to be retained, rendering the 
corresponding private data elements unstable. These errors were due to a 

https://dicom.nema.org/medical/dicom/current/output/html/part15.html
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misunderstanding of the role of private creator values, which cannot be changed.  
● UIDs were correctly replaced.  
● PII burnt-in to the pixel data was successfully detected and removed, with one false 

positive. 

Further details on this phase can be found by reviewing our AACR abstract and presentation12. 

Phase 3 introduced additional pre- and post-processing scripts to add additional layers of de-
identification to the DICOM files not natively supported by the Healthcare API de-identification. 
By introducing these new layers, we were able to reduce the total errors by 33% with the 
greatest reduction in errors being text not removed and tag not retained errors. See Table 1 for 
details of the MIDI Phases 2 and 3 pipeline results. Note that UIDs were not changed during 
these phases for easy comparison of input and output images and therefore the action to 
change UIDs is not shown here. 

 
Table 1. Results based on de-identification actions comparing runs from 2nd phase and the 3rd 
phase. 

Error Type 2nd Phase End Results 3rd Phase End Results 

Date not Shifted 37 15 

Text not Removed 446 259 

Text not Retained 420 238 

Tag not Retained 259 6 

Text not Null 238 389 

Total 1355 907 

II.c DICOM Overview  

What is DICOM  

Digital Imaging and Communications in Medicine (DICOM)14 is the most widely used and 
accepted international standard for the communication and management of medical imaging 
information and related data. It defines the formats for medical images that can be exchanged 
with the data and quality necessary for clinical use including almost every radiology, cardiology 
imaging, and radiotherapy device (X-ray, CT, MRI, ultrasound, etc.). It is also being used 
increasingly in devices in other enterprise medical domains such as digital pathology, 
dermatology, ophthalmology and dentistry. 

DICOM is a world-wide standard that can be used in every locale. It provides mechanisms to 
handle data that support cultural requirements, such as different writing systems, character sets, 
languages, and structures for addresses and person names. It supports the variety of 
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workflows, processes and policies used for biomedical imaging in different geographic regions, 
medical specialties and local practices. Localization to meet the requirements of national or 
local health and workflow policies can be done by including specifying code sets (e.g., 
procedure codes), or profiling data element usage (both specifying locally allowed values, and 
making elements that are optional in the Standard mandatory for local use). 

DICOM Attributes 

A DICOM object (such as an image) consists of pixel data and metadata, encoded as a list of 
“data elements”, each identified by a tag consisting of a pair of hexadecimal numbers. Some 
contain PII, such as Patient’s Name (0010,0010), and others do not, such as Number of Frames 
(0028,0008). The structure of the data element is as follows: 

● Tag - A unique identifier for a Data Element composed of an ordered pair of numbers. 
● Value Representation (VR) - Specifies the data type and format of the Value(s) 

contained in the Value Field of a Data Element. 
● Value Length - The length of the Value Field of the Data Element. 
● Value - A component of a Value Field. A Value Field may consist of one or more of 

these components. 

More details on DICOM Data Structures and Encodings see DICOM PS3.5 2024e - Data 
Structures and Encoding. 

II.d Data Sets 
MIDI Phase 4 used multiple datasets to evaluate the success of the MIDI pipeline, both 
synthetic and, for the first time, a dataset with real PHI/PII. These datasets consisted of: 

1. MIDI Dataset: An imaging dataset with synthetic PHI/PII prepared by UAMS. 
a. MIDI 1.0 Dataset: Synthetic dataset initially created for testing MIDI 
b. MIDI 1.1 Dataset: Synthetic dataset to improve on and expand MIDI 1.0 

consisting of 6 groups. 
i. MIDI-B Validation Dataset: MIDI 1.1 Dataset Groups 1 and 2 
ii. MIDI-B Test Dataset: MIDI 1.1 Dataset Groups 3-5 

2. Source Dataset: Imaging dataset that contains real PHI/PII 
3. CTP Dataset: The source dataset that has been pre-identified by CTP 
4. UAMS Dataset: The CTP dataset that was curated and de-identified by the UAMS 

curation team. 
 
Prior phases of MIDI only used the MIDI 1.0 Dataset and MIDI 1.1 MIDI-B Validation Dataset. A 
history of the MIDI Datasets and their use through Phases 1-3 is provided below. 
 
 

https://dicom.nema.org/medical/dicom/current/output/html/part05.html#glossentry_DataElement
https://dicom.nema.org/medical/dicom/current/output/html/part05.html#glossentry_DataElement
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Synthetic MIDI Dataset 

Table 2. The synthetic MIDI datasets that were generated over the course of the MIDI project. 
MIDI Dataset 1.0 was used in Phases 1 and 2 while groups of MIDI Dataset 1.1 were used in 
Phases 3 and 4 and the MIDI-B Challenge. 

Name Groups Phases Used 

MIDI 1.0 Dataset 1 1,2 

MIDI 1.1 - MIDI-B Validation 
Dataset 

1,2 3,4 

MIDI 1.1 - MIDI-B Test 
Dataset 

3,4,5 MIDI-B Challenge, 4 (through 
non-competitive runs of MIDI-B 
Challenge) 

Synthetic Protected Health Information (PHI) and Personally Identifiable Information (PII) was 
generated and inserted into selected DICOM data elements and burned into pixel data to mimic 
typical clinical imaging exams. Information from the DICOM Standard as well as TCIA curation 
audit logs guided the insertion of synthetic values into both standard and private DICOM data 
elements and pixel data. 

Three MIDI datasets were created during the duration of MIDI by UAMS. These dataset names, 
groups, and phases used are shown in Table 2. A description of the synthetic MIDI Datasets 
used in this project are documented17 and a subset of 1.0 is made available18. The synthetic 
MIDI datasets were generated in multiple releases or versions.  

MIDI Phases 1 and  2 used a subset of the 1.0 dataset, a 21-patient dataset. It was generated 
using a total of 1,693 images (CT, MRI, PET, and digital X-ray) selected from datasets 
published in TCIA. It follows the DICOM Standard and TCIA best practices for use in evaluating 
the performance of de-identification algorithms. The MIDI dataset generated for MIDI Phase 3 
was created in a similar manner. It was split into six subsets, where groups 1 and 2 were used 
for validation of the MIDI pipeline and 3-5 were used in the MIDI-B challenge. 

The full process of generating the synthetic datasets is summarized in Figure 3. Note that the 
subject and study counts apply to the MIDI 1.0 dataset, but the process applies to all of the 
synthetic MIDI Datasets. 
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Figure 3. Creation of the synthetic dataset as completed by UAMS. 

Selected imaging studies from TCIA were chosen to represent a broad cross-section of the 
current TCIA public collections. Table 4 breaks down the content of the synthetic evaluation set 
into the total number of patients, studies, series and images per modality, anatomy imaged by 
modality and manufacturers of imaging equipment used to collect the data. No images of 
heads were included to avoid subjects being identified by facial features.  

For phase 3, the MIDI-B Validation Dataset used for testing contained 23,921 images consisting 
of 216 patients, 241 studies and 280 series. The counts for both MIDI-B Validation Dataset 
broken into groups 1 and 2 are below in Table 3. Also listed are the counts per imaging modality 
in Table 4. 

Table 3. MIDI-B Validation Dataset counts used in Phase 3. 

Group Patients Studies Series Instances 

1 108 120 143 14662 

2 108 121 137 9259 
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Total 216 241 280 23921 

 

Table 4. MIDI-B Validation Dataset broken into Groups 1 and 2 counts by modality 

Modality Group Patients Studies Series Instances 

CR 
1 11 11 12 13 

2 11 12 12 13 

CT 
1 20 25 26 2217 

2 19 23 23 2189 

DX 
1 11 12 14 16 

2 11 13 13 18 

MG 
1 12 12 12 15 

2 13 13 13 16 

MR 
1 26 28 31 1723 

2 26 27 29 1788 

PT 
1 15 18 25 10655 

2 14 19 23 5069 

SR 
1 10 10 10 10 

2 11 12 12 12 

US 
1 12 13 13 13 

2 12 12 12 154 

MIDI-B Test Dataset 
The MIDI-B Test Dataset, generated from groups 3, 4, and 5 of the synthetic MIDI 1.1 dataset, 
was an additional dataset that we tested. The dataset consisted of 322 patients and over 29,000 
images. 

Table 5. MIDI-B Test dataset counts by modality 
Modality Patients Studies Series Instances 

CR 65 73 75 78 

CT 120 147 150 14517 

DX 64 72 75 107 

MG 74 74 75 90 

MR 157 167 175 10828 

PT 88 117 150 42187 
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SR 62 67 75 75 

US 73 75 75 283 

 

This dataset was used as the Test Phase of the MIDI-B Challenge19 and more information can 
be found here: Synapse MIDI-B Challenge. Figure 4 is a screenshot of the MIDI-B challenge 
website as of 12/2024. 

 

Figure 4. The MIDI-B Challenge front page as seen during the competition. 

Source Dataset 

The Source Dataset is the focus of this current phase. All previous phases concentrated on 
using the synthetic datasets described above, but this is the first time we used a real dataset 
containing real PHI/PII. This dataset is a subset of a Multiple Myeloma patient dataset that was 
chosen by UAMS due to its complexity. 

The dataset consists of 393,899 DICOM instances which come from 302 patients, 799 studies, 
and 7542 series. It has representation for 18 different modalities as shown in Table 6. The only 
de-identification already performed on the source dataset is that which might have been 
performed by the submitting site prior to the application of the UAMS-supplied CTP process. 

Table 6. Source Dataset Counts by Modality 
Modality Patients Studies Series Instances 

CR 129 146 636 657 

CT 255 422 1155 214680 

DX 3 4 4 4 

ECG 1 1 2 2 

KO 1 1 1 1 

MG 2 2 7 7 

http://synapse.org/Synapse:syn53065760/wiki/
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MR 68 78 2481 54389 

NM 52 55 116 240 

OT 43 44 104 5461 

PR 210 322 2340 2377 

PT 203 203 405 114611 

REG 1 1 1 1 

RF 20 20 21 28 

SEG 1 1 1 12 

SR 26 26 28 30 

US 44 47 47 436 

XA 47 49 179 361 

XD 13 13 14 351 

CTP Dataset 

The CTP Dataset is described in detail by UAMS’ report and summarized here. It is a subset of 
the Source Dataset listed above, but passed through an initial phase of processing using the 
Clinical Trial Processor (CTP) as configured by UAMS with a script that follows the DICOM 
PS3.15 profile5, and performs an initial level of de-identification20. This resulted in approximately 
47,000 images to be quarantined. Of these files approximately 29,000 images were visually 
inspected and determined to not contain PHI/PII and were processed again by CTP, but without 
quarantining and added to the dataset. The remaining 18,000 images remained excluded from 
the CTP dataset. This resulted in the dataset described in Table 7. 

Table 7. CTP Dataset Counts by Modality 
Modality Patients Studies Series Instances 

CR 126 143 626 634 

CT 255 419 1076 214486 

DX 3 4 4 4 

ECG 1 1 2 2 

KO 1 1 1 1 

MG 2 2 7 7 

MR 68 78 2457 54289 

NM 25 25 65 189 

OT 10 10 15 34 

PR 210 322 2340 2377 

PT 203 203 341 101826 
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REG 0 0 0 0 

RF 9 9 9 11 

SEG 0 0 0 0 

SR 25 25 26 28 

US 43 46 46 421 

XA 44 46 176 358 

XD 0 0 0 0 

UAMS Dataset 
The UAMS Dataset was the curated dataset used as the comparison for the MIDI pipeline 
results to be benchmarked against in Phase 4. It similarly started with the Source dataset, 
passed through CTP, and then was curated using TCIA best practices. The counts in 
comparison are very similar, however some images were specifically held out including all 
images with the modality of Presentation State (PR) as seen in Table 8.  

Table 8. UAMS Curated Dataset by Modality 
Modality Patients Studies Series Instances 

CR 119 132 575 600 

CT 255 419 1059 21441 

DX 3 4 4 4 

ECG 1 1 2 2 

KO 1 1 1 1 

MG 2 2 7 7 

MR 68 78 2457 54289 

NM 25 25 73 187 

OT 1 1 5 5 

PR 0 0 0 0 

PT 203 203 338 101826 

REG 0 0 0 0 

RF 9 9 9 11 

SEG 0 0 0 0 

SR 24 24 25 25 

US 3 3 3 52 

XA 41 43 171 348 

XD 0 0 0 0 
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II.e Google Isolator 
To allow for the Source dataset to be uploaded to the Healthcare API and be accessed by the 
Deloitte team, Google required that Google Isolator21 be implemented first. Isolator provides a 
layer of protection to the environment to ensure sensitive data is protected while being used in 
collaborations between multiple parties. It provided safeguards that included protecting data 
from accidentally being downloaded or being used on unapproved devices. 

This was the first time Isolator was installed within the NCI CBIIT environment. It did take 
approximately 8 weeks to complete the setup as it required collaboration between Google, 
CBIIT, and CIT stakeholders based on how NCI’s Cloud Two environment is set up.  

III. Methods 
De-identification of DICOM images is a multi-step process that involves inspecting metadata 
and pixel data for PHI/PII. The metadata data element values are either removed, kept, or 
cleaned. We start by using the DICOM PS3.15 Basic Application Level Confidentiality Profile 
using the Clean Descriptors Option. While DICOM PS3.15 provides multiple choices based on a 
datasets needed for de-identification, this was the agreed upon option for the MIDI pipeline. To 
meet this standard and to automate the process we configured a pipeline using GCP and the 
Healthcare API, and included additional processing scripts. 

This work builds on previous MIDI phases to improve the de-identification results and attempt to 
fix problem areas identified above (Section: Previous Phases of the MIDI Project). Through 
small changes made to the algorithm (Section: De-Identification Scripts) and reviews of results 
we were able to consistently improve on the results. For example, identified limitations (Section: 
De-Identification Scripts) of the Healthcare API were fixed using Python scripts that use regular 
expressions to identify and remove PHI/PII in free text values. We also updated the pipeline to 
run using Cloud Functions that were parallelized to automate the pipeline without the need to 
manually trigger each step of the process. These steps and different scripts are described 
below. 

The MIDI Phase 4 project made use of a public beta version of the Healthcare API rather than 
the general release version, in order to take advantage of specific features. These include the 
ability to specify tags to be kept, cleaned, or removed using Curl scripts. The additional pre-and 
post-processing scripts are written in Python using the open-source package Pydicom22. 
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II.a Phase 4 GCP Pipeline Architecture

 
Figure 5. The MIDI pipeline architecture used in Phase 4. 

For this phase, the infrastructure for the MIDI project was established on the NCI’s Cloud 2 
environment with the Project ID: nih-nci-cbiit-midi-dev2. The architecture of the de-identification 
pipeline includes the following stages which are valid for both single images and batch 
processing: 

1) Load images into a Cloud Storage Bucket that has the appropriate firewall and security 
settings. 

2) Trigger pipeline through the use of Cloud Functions. 
3) Automated process transfers the image/images into an established DICOM Store using 

Cloud Functions that call the Google Healthcare API. 
4) Run the Google Healthcare API de-identification service with the appropriate 

configuration flags. Google Healthcare API returns the de-identified image to a 
separately established De-Identification DICOM Store. 

5) Logs are captured during the Healthcare API run, resulting in FHIR output that can be 
used to see all changes made to the DICOM images. 

6) A second cloud function is initiated to run the post-processing, which returns the data to 
a specified Cloud Storage Bucket. 

7) This step is part of the evaluation process of MIDI, and may be used in future 
evaluation/validation steps. Here we pull data from the Cloud Storage Bucket in a Virtual 
Machine environment and run comparison scripts prepared by TCIA and Ellumen for 
analysis. Additional analysis is also performed using Vertex AI Notebooks. 
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The pipeline is separated into two de-identification phases. One is to run the Healthcare API 
and the second is to run the post-processing scripts on the Healthcare API output. We currently 
keep these two processes separate because this project involved many updates to the post-
processing scripts, for which the Healthcare API service did not need to be rerun. This improved 
our experimental efficiency and reduced cost. 

II.b De-Identification Scripts 
The MIDI pipeline is made up of two scripts, the GCP Healthcare API script that specifies the 
configurations of a GCP Healthcare API de-identification run, and a post-processing script which 
adds a further layer of de-identification to the DICOM files after they’ve gone through the GCP 
de-identification. 
All scripts can be found on GitHub and instructions how to run them are at the end of this 
document in the Appendix. 

Healthcare API Commands 
GCP’s Healthcare API allows for many configurations that we tested during this and the 
previous three phases. For this phase we are using the De-identify DICOM data using 
DicomTagConfig option which is, as of the date of this report, in the public beta. We will review 
the options we use here, however the full script can be found on GitHub, 

● The first specified option is to keep certain data elements based on either their tag or 
their  DICOM Value Representation (VR) (i.e., the “data type”). VRs decided to be 
retained which are not normally kept are included due to issues identified by purely using 
the Healthcare API to inspect and replace. This includes dates and date times. While the 
identification of dates by the Healthcare API performs reasonably well, there is an issue 
where there is a chance the randomly shifted date might shift by 0 (i.e., no shift at all). 
We work around this issue by having Google retain these, and doing date shifting in our 
post processing scripts instead. 

● The second option is to remove data elements by their tag or VR. These have been 
determined through a systematic review and discussion amongst the MIDI team in 
tandem with using PS3.15 for data elements that should always be removed. 

● The third option is to entirely replace values of certain data elements. This applies to 
data elements that must exist but can contain placeholder values. 

● For all other values, including the pixel data, we use the Clean Text Tag option. This 
option uses GCP’s DLP capabilities to identify and remove PHI/PII. 

● We also activate the recursive tag option, which reviews all data elements nested within 
sequence items in the same manner as top-level data elements.We then use the 
regenerate option for Unique Identifier data elements (UIDs) that are meant to be 
regenerated (other than UIDs of well-known entities that are required to be retained, 
such as SOP Classes). UIDs are kept consistent across images by using a hash 
function. 

https://github.com/CBIIT/MIDI_validation_script
https://github.com/CBIIT/MIDI_validation_script
https://github.com/CBIIT/MIDI_processing_script/tree/main/MIDI_gcp_script
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● We then use the Operation Metadata feature, which writes all changes made to a FHIR 
store so that we can inspect the logic of the process, as well as create UID maps that 
are needed to match the before and after files for comparison. Changes recorded in the 
FHIR store are then read in BigQuery or Jupyter Notebooks using GCP’s AI Platform. 

● The final option is to select the profile type, which is the ‘Deidentify Tag Contents’ option, 
which follows the PS3.15 clean descriptor’s de-identification profile. 
 

There were eight iterations of the GCP script created and tested in this phase. The scripts and 
changes made for each script, as well as the decisions behind each change, are detailed in 
Table 6. All changes of how the GCP script treats specific DICOM data elements based on their 
tag or VR were based on consensus from the MIDI group. For example, if a data element with a 
specific tag resulted in many potential PHI/PII leak errors errors which could not be otherwise 
prevented and was also deemed not to be of research significance, the group decided it should 
be added to the remove list.  

Post Processing Scripts 
In MIDI Phases 1 and 2, de-identification was performed entirely using the GCP tool. However, 
we continued to run into certain errors that prompted us to create the post-processing step in 
Phase 3. These errors were the zero date shift (discussed above), as well as patient identifiers, 
some person initials, and location or institution acronyms that were not being identified and 
removed by the GCP tool (e.g.,: ’scan by RP’ or ‘performed at VCU’). Six versions of the Post-
Processing script were made in Phase 3. They primarily focused on regenerating the Patient ID 
data element, using regular expressions to find and shift dates, and finding and removing 
Patient IDs, institution acronyms, person initials, and phone numbers in free text data elements. 

There were eleven versions of the post-processing script created and tested in this phase. The 
primary focus of the work was on private data elements. Private data elements refers to a data 
element that is not defined by the DICOM standard, instead they allow manufacturers or users 
to add custom data not covered by existing data elements. Because private data elements 
require both the Private Creator and tag to be identified, and GCP identifies data elements by 
just using the tag, we ran into issues trying to keep or remove certain private data elements in 
the GCP script. For instance, if we wanted to automatically keep one private data element, but 
there was another private data element in the dataset with the same tag but a different Private 
Creator, the GCP script would keep the value. We moved our handling of private data elements 
over to post processing to prevent this issue from occurring. This and all other changes made 
for each version of the post processing script, along with the reasoning for each decision, are 
detailed in Table 8. 

Private data element handling was first introduced in Post-Processing script v7. It checks 
whether a tag group number is odd (meaning it is a private data element), and then checks if 
that private data element exists in the TCIA keep list. Post processing script v8 made the 
improvement of correcting how the keep list was parsed through. Post processing script v9 
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made the fix of capitalizing letters in the DICOM tags before looking for a match in the TCIA 
keep list (which contains all capitalized letters). Post processing script v10 made the crucial 
change of basing the matching process on the Private Creator for the block. As discussed 
above, private data elements exist within a private data element block which is identified by the 
Private Creator data element for that block. A private data element cannot be correctly identified 
by tag alone, because multiple private data elements could exist in the same tag. Post-
Processing script v11 then again fixes the capitalization issue, which occurred again when the 
major changes were made in the script for v10. Post-Processing script v12 made the final fix to 
private data element handling, which was to base the matching process not just on the most 
recent Private Creator element, but the Private Creator element that corresponds to the data 
element’s tag. 

Decisions Made 
Table 9 - Decisions and reasoning made during this phase on changes to the de-identification 
scripts. 

Decision Made Reasoning Script Version 
Implemented 

Run 
Implemented 
For 

First (failed) attempt 
to include private 
data element 
cleaning 

The decision was made to 
automatically keep the private 
data elements determined as 
safe by TCIA and remove all 
other private data elements via 
the post-processing script. The 
TCIA keep list was provided by 
TCIA in the form of a csv and 
is a thorough list of private 
data elements they have 
determined to be both 
scientifically important and 
never contain PHI/PII. The csv 
was then uploaded into a 
Google cloud bucket where it 
could be accessed by the post 
processing script. Previously 
we had added private data 
elements to the GCP keep list 
when we encountered 
elements that should be kept 
in the synthetic MIDI dataset 
results. However, the GCP API 
does not allow users to 
accurately specify private data 

post processing 
v7 

Run 2024-07-
12 (synthetic) 
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elements. So a private data 
element in the keep list could 
end up keeping a completely 
different private data element 
that should actually be 
removed. Moving this feature 
over to post-processing 
allowed us to prevent this from 
happening. 

Expanded the phone 
number formats the 
script looks for and 
removes 

Some phone number formats 
were still getting through 

post processing 
v8 

Run 2024-07-
21  (synthetic) 

The random seed for 
date shifting and 
patient ID generation 
were set with patient 
ID instead of series 
number. 

Date shifting and patient ID 
generation was previously only 
consistent for the same series. 
So if a patient had multiple 
series within a study, the dates 
and patient ID generation was 
not consistent for that patient. 
Changing the random seed for 
date shifting and patient ID 
generation made it so these 
changes would be consistent 
for the same patient across 
multiple 
studies/series/instances.  

post processing 
v8 

Run 2024-07-
21  (synthetic) 

Slight fix to private 
data element 
handling 

It took multiple attempts to get 
the private data element 
function in the post processing 
script working as intended. 
This was the first attempted 
fix. The details of changes 
made to private creator 
handling are described in the 
section above. 

post processing 
v8 

Run 2024-07-
21  (synthetic) 

Attempt to fix private 
data element 
handling. 

It took multiple attempts to get 
the private data element 
function in the post processing 
script working as intended. 
This was the second 
attempted fix. The details of 
changes made to private 
creator handling are described 

post processing 
v9 

Run 2024-07-
29 (synthetic) 
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in the section above. 

Patient ID maps 
generated 

The new version of the 
validation script required a 
before/after patient ID map as 
well as a UID map 

post processing 
script v10 (but 
didn't do it right in 
automatic 
pipeline) 

Run 2024-08-
13 (synthetic) 

Added in the data 
elements de-
identification method, 
source application 
entity title, patient 
identity removed, and 
the de-identification 
entity title sequence.  

New data elements were 
added in (primarily in group 2) 
that track changes made 
during the de-identification 
process. This was done to 
maintain DICOM compliance. 

post processing 
script v10 

Run 2024-08-
13 (synthetic) 

Major fix to how 
private data elements 
are cleaned 

It took multiple attempts to get 
the private data element 
function in the post processing 
script working as intended. 
This was the third attempted 
fix. The details of changes 
made to private creator 
handling are described in the 
section above. 

post processing 
script v10 

Run 2024-08-
13 (synthetic) 

Moved some tags 
over to remove from 
reset so they won't be 
replaced by 
PLACEHOLDER. 
keeps the 5 tags in 
reset that are 
required to have a 
non-zero value 

Many of the tags previously in 
the reset list actually belong in 
the remove list according to 
the DICOM standard. They 
were moved over in order to fix 
this issue. 

script 8-13-24 Run 2024-08-
13 (synthetic) 

Used FHIR store 
change tracking in 
order to create a UID 
mapping. Switched to 
using de-identify 
dicomstore instead of 
de-identify dataset in 
order to accomplish 
this. 

We stopped retaining the three 
main mapping UIDs (SOP 
Instance, Series, and Study 
UIDs) in order to test the fully 
de-identifying version of the 
pipeline. To create the UID 
mapping files, we had to track 
all UID changes with the FHIR 
store tracking feature. We also 
had to switch to using the de-
identify dicomstore API 

Script 8-01-24 Run 2024-08-
13 (synthetic) 
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because only that API contains 
the FHIR store tracking 
feature. 

Entered the new 
patient ID into the 
Patient Name data 
element.  

Done since this is the standard 
procedure in DICOM de-
identification 

Post processing v 
11 

Run 2024-08-
18 (synthetic) 

Changed the time 
delta to +/-900 days 
(excluding 0) 

Requested by group as better 
practice 

Post processing v 
11 

Run 2024-08-
18 (synthetic) 

Replaced 
PLACEHOLDER with 
REMOVED for tags 
that are reset. 

The GCP de-identification API 
replaces reset data elements 
with ‘PLACEHOLDER’, which 
sometimes goes over the 
character limit for those data 
elements. In order to solve that 
issue and make our results 
more similar to TCIA’s, we 
replace these data elements 
with ‘REMOVED’ in the post-
processing script. 

Post processing v 
11 

Run 2024-08-
18 (synthetic) 

Removed 3 UID data 
elements from 
remove tag list, since 
they should be 
changed not removed 

These UIDs had been added 
to the remove list in a previous 
phase of the project when UID 
shifting wasn’t configured to 
work as consistently, and it 
was determined that these 
UIDs should be removed 
rather than remain unshifted. 
Now that UID shifting works 
correctly, these UIDs can be 
taken out of the remove list. 

sc8-16-24 Run 2024-08-
18 (synthetic) 

Removes Patient 
Birth Date instead of 
shifting 

Based on group consensus  Script 8-16-24 Run 2024-08-
18 (synthetic) 

Skip sequence data 
elements when 
looking for private 
elements.  

There were some cases where 
private data elements that 
should be kept were in 
sequences. And because the 
sequence tag wasn’t listed to 
be kept by TCIA, the entire 
sequence was removed 

Post processing 
v12 

Run 2024-08-
26 (synthetic) 
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(including the elements that 
should be kept). We changed 
the script to look through every 
private sequence and 
remove/keep data elements 
within the sequence according 
to the TCIA keep list. 

Final fix to private 
data element 
handling 

It took multiple attempts to get 
the private data element 
function in the post processing 
script working as intended. 
This was the final fix. The 
details of changes made to 
private creator handling are 
described in the section 
above. 

Post processing 
v12 

run 2024-08-26 
(synthetic) 

Changed dateshift to 
-300 to -900 
(excluding 0) 

The group decided they 
preferred this date shifting 
window 

Post processing 
v12 

run 2024-08-26 
(synthetic) 

Used pre-created 
Patient’s ID mapping 
and got rid of the old 
mapping tracker.  

In order to change Patient IDs 
exactly the same as TCIA (so 
we could minimize 
discrepancies in the 
comparison results), we began 
using a pre-created patient ID 
mapping file as a guide for 
how to shift patient IDs in the 
post-processing script. 

Post processing 
v12 

run 2024-08-26 
(synthetic) 

Changed the way 
that files are 
uploaded to GCP in a 
way that updates the 
header info. 

According to the DICOM 
standard, the group length 
data element in the PS3.10 
meta information header 
needs to be updated with the 
new length when changes to 
the header data are made. We 
changed the way we upload 
the files back to GCP storage 
after post-processing using 
pydicom so that pydicom 
automatically updates the 
group length. 

Post processing 
v12 

run 2024-08-26 
(synthetic) 

Removed the Series 
Number data element 

Determined by group 
consensus  

sc8-26-24 run 2024-08-26 
and run 2024-
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(0020,0011) from 
remove list and 
added to keep list 

08-30 
(synthetic) 

Removed Patient’s 
Birth Date in post 
processing.  

For some reason removing it 
wasn’t working in GCP.  

Post processing 
v13 

run 2024-08-30 
(synthetic) 

Added 
implementation 
version name as 
gcpv1beta1.  

Implementation Version Name, 
according to the DICOM 
standard, needs to be updated 
with the version of the tool 
used for de-identification. 

Post processing 
v13 

run 2024-08-30 
(synthetic) 

Updated private tag 
finder to use capital 
letters.  

Previously, private data 
element tags in the TCIA keep 
list contained letters that were 
capitalized, while the letters in 
tags within pydicom files were 
lowercase. This led to private 
data elements that should be 
kept not being identified. We 
changed the script to account 
for this. 

Post processing 
v13 

run 2024-08-30 
(synthetic) 

Entered the new 
Patient’s ID into 
Clinical Trial Subject 
ID and Clinical Trial 
Reading (if it exists). 

This is the TCIA standard for 
de-identification. 

Post processing 
v13 

run 2024-08-30 
(synthetic) 

Replaced verifying 
observer name and 
person name with 
REMOVED. 

Group consensus decision 
made to match results closer 
to TCIA output 

Post processing 
v14 

run 2024-09-05 
(synthetic) 

Clinical Trial Subject 
ID is replaced with 
the new patient ID. 

This is the TCIA best practice 
for de-identification. 

Post processing 
v14 

run 2024-09-05 
(synthetic) 

Removed Retain 
Device Identity from 
de-identification entity 
title sequence. 

We determined that we were 
not using the Retain Device 
Identity option. 

Post processing 
v14 

run 2024-09-05 
(synthetic) 

Added Clinical Trial 
Protocol ID, Clinical 
Trial Subject ID, and 

Group consensus decision 
made to match MIDI output 
closer to TCIA output 

sc9-05-24 run 2024-09-05 
(synthetic) 
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Clinical Trial Subject 
Reading ID to reset 
tag from remove list 
so that they will be 
replaced with 
‘REMOVED’ 

Tailored the script to 
the CTP run. 
Removed date 
shifting. Removed 
dates found not in DA 
or DT. Removed 
patient ID changing.  

The script for the CTP run had 
to be altered because the CTP 
dataset had already been 
mostly de-identified by the 
CTP, so things like date 
shifting and changing patient 
ID were redundant. 

Post processing 
v15 

run 2024-09-25 
(ctp) 

Puts REMOVED into 
Presentation 
Creator's Name 

Group consensus decision 
made to match MIDI output 
closer to TCIA output 

Post processing 
v15 

run 2024-09-25 
(ctp) 

Changed Clinical 
Trial Subject ID and 
Clinical Trial Subject 
Reading ID to equal 
str(new patient id) 
instead of the new 
patient id in integer 
form 

When we first added patient ID 
into these data elements in the 
previous post processing 
script, the integer version of 
the new patient ID instead of 
the string version was added, 
resulting in formatting 
mistakes. 

Post processing 
v15 

run 2024-09-25 
(ctp) 

Tailored for CTP run. 
No UID changes or 
fhir store tracker. 

The script for the CTP run had 
to be altered because the CTP 
dataset had already been 
mostly de-identified by the 
CTP, so things like UID 
shifting were redundant. 

sc9_13_24 run 2024-09-25 
(ctp) 

Re-tailored post 
processing script for 
non-CTP run 

Added back in features such 
as patient ID changing and 
data shifting. 

Post processing 
v16 

run 2024-10-08 
(source) 

No longer put 
REMOVED in 
Presentation 
Creator's Name 

Decision made to match MIDI 
output closer to TCIA output. 

Post processing 
v16 

run 2024-10-08 
(source) 

Introduced parallel 
processing. 

The post-processing run on 
the CTP data took about a 
week because the dataset is 
so large, so we updated the 

Post processing 
v16 

run 2024-10-08 
(source) 
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post-processing script to 
involve parallel processing so 
that the run could be done in 
an hour or two. 

Added all of the 
Private Creator tags 
found in TCIA’s keep 
list to the GCP keep 
list 

Done so that Private Creators 
are never removed, which 
caused the private data 
element function in the post 
processing script to stop 
working when it happened. 

sc10-04-24 run 2024-10-08 
(source) 

Removed Curve Data 
and Overlay Data 
data elements.  

Done according to DICOM 
standard. 

Post processing 
v17 

Run 2024-10-
25 (source) 

Set Media Storage 
SOP Instance UID to 
new SOP Instance 
and UIDvalue 

Done according to DICOM 
standard. 

Post processing 
v17 

Run 2024-10-
25 (source) 

Added Secondary 
Capture Device ID 
and Hardcopy 
Creation Device ID 
and Referenced File 
ID to remove list 

Group consensus decision. sc10-25-24 Run 2024-10-
25 (source) 

 

II.c Evaluation 
Evaluation of the MIDI pipeline was conducted with three runs. The first run used the synthetic 
MIDI 1.1 Datasets, the second used the UAMS Curated Dataset, and the third used the Source 
Dataset. Results of the MIDI pipeline from each run were then compared to desired results as 
described below. Multiple de-identification runs were made throughout the MIDI Phase 4 PSO 
Engagement. This allowed the project team to analyze the results, make modifications to the 
methods (in particular, the post-processing script) outlined above, and improve the accuracy of 
the results. 

MIDI 1.1 Dataset Run 

The MIDI 1.1 Dataset Run utilized the curated synthetic MIDI Dataset, which included an 
answer key and a validation script to compare the MIDI pipeline results to an answer key. 

The validation script23 written in Python is provided for comparing the answer key to a de-
identified version of the synthetic data. The script utilizes answer key files generated during the 
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creation of the synthetic datasets along with mapping files for both UIDs and patient IDs, which 
map pre-curated IDs to post-curated IDs, to validate all data elements for all DICOM images in a 
curated dataset. 

We directly viewed the total number of errors based on actions that were required to be taken. 
The errors were grouped as: 

1. Text Removed - where text which was deemed to be PHI/PII was not removed 
2. Text Retained - where text which was deemed not to be PHI/PII was removed 
3. Tag Retained - where tags were failed to be kept, usually necessary for DICOM 

compliance 
4. Text Not Null - where text was blank, usually necessary for DICOM compliance 
5. UID Changed - where UIDs were not properly altered 
6. Date Shifted - where dates were failed to be shifted 
7. Pixels Hidden - where burnt-in pixels with PHI/PII were failed to be hidden  
8. Pixels Retained – where pixels not containing PHI/PII were obscured 
9. UID consistency – UIDs were changed but not consistently for a given patient 
10. Patient ID consistency – Patient IDs were changed, but not changed consistently 

UAMS Curated Dataset Run 
The UAMS Curated Dataset Run utilized the UAMS Curated Dataset, which included a 
comparison script. This script did a direct comparison of the differences between the MIDI 
output and the UAMS Curated Dataset. These differences were recorded in excel files for 
analysis which is discussed in the below Results & Discussion section. 

Source Dataset Run 

The Source Dataset Run utilized the Source Dataset containing real PHI/PII, which did the 
same comparison as the UAMS Curated Dataset runs. The comparison script was used to 
compare the outputs for the Source and CTP datasets. These scripts perform a one-to-one 
comparison with the files in the TCIA Curated Dataset, which was used as the answer key, and 
then evaluated by the team to identify errors in the MIDI pipeline output. The results are 
discussed in the below section. 

IV. Results & Discussion 
The sections below review the results of our most recent runs on the datasets for both the Pixel 
Data and the Header Data. 
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IV.a Pixel Data 
The tables below show a comparison of the error types identified during our most recent runs for 
the pixel data. They are broken up by dataset.  

Run using MIDI-B Validation Dataset comparing MIDI Pipeline output with Answer 
Key 
The results on the pixel data can be seen in Table 10. Of the 23,933 instances, there were ten 
images that required PHI/PII to be removed and all were correctly completed. There were two 
additional images that contained false positives and are displayed below. This results in an error 
rate of 0.008% for the pixel data on the MIDI-B Validation Dataset. 

 Table 10. Pixel actions taken on the MIDI-B Validation Dataset by the MIDI pipeline 

Pixel Actions Count 

Correct PHI/PII Removal 10 

False Positive PHI/PII Removal 2 

False Negative PHI/PII Removal 0 

No Action Required and No Action Taken 23921 
  

   

Figure 6. Example of PHI/PII being correctly removed. 

Figure 6 is an example of PHI/PII being correctly removed with black bounding boxes replacing 
the sensitive text. 
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Figure 7. Example of false positives, where bounding boxes were incorrectly placed. 

In Figure 7 there are the two instances of false positive PHI/PII removal. On the left image, text 
is removed on the right-hand side that does not need to be removed. On the right image, notice 
part of the body is incorrectly being removed. This is a common issue that is also seen in the 
source dataset. 

There were 20 additional files flagged by the validation script for containing false positive pixel 
removals. However, all 20 of these files contained images within 3d multi-frame arrays, instead 
of the typical 2d single-frame pixel arrays seen in the rest of the dataset. When we examined 
the contents of the pixels post de-identification, no changes were found. This leads us to believe 
that there was an issue with how the validation script examined 3d multi-frame arrays, causing 
false flags on 20 files. An example of one of the file’s images can be seen in Figure 8.  
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Figure 8. Example of 3D multi-frame array that was incorrectly flagged by the validation script, 
however MIDI pipeline correctly did not incorrectly remove any pixels. 

Run using CTP Dataset comparing MIDI Pipeline output with UAMS Curated 
Dataset 
Here we show the discrepancies between the MIDI pipeline being run on the CTP dataset 
compared with the UAMS Curated datasets. Table 11 shows these discrepancies based on 
where the MIDI pipeline incorrectly removed a part of the image which would severely impact 
the image analysis such as putting a black box over an organ as well as minor false positive 
image removal such as removing part of a table or corner of an image deemed inconsequential 
to human interpretation of the image (However, it should be noted that removing pixels from any 
part of the image, even if it may not impact human analysis of the medical information 
contained, can still severely impact the performance of AI algorithms and undermine their 
generalizability). We also identified cases where text was removed, but it was not sensitive, 
cases where the MIDI pipeline failed to remove acronyms that TCIA removes by their best 
practices, and then the correct PHI/PII removal. 

Table 12 identifies the instances where there were identity leaks due to patient IDs being 
burned in but not successfully removed by the MIDI pipeline (i.e., false negatives). 

Table 11 - Pixel Data Discrepancies between MIDI pipeline output and UAMS Curated 
Datasets. False positive image removal includes any false positives where vital information is 
removed. Minor false positives include pixels removed on boundaries or tables. Major False 
Positive Text Removal is any text that was unnecessarily removed in the pixel data. TCIA 
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Acronym Removal includes acronyms failed to be removed that are by TCIA. PHI/PII removal 
are failures to remove PHI/PII. 

MIDI Pipeline vs UAMS Curated Dataset Discrepancies  

Discrepancy Type Count 

MIDI Pipeline False Positive Image Removal 25 

MIDI Pipeline Minor False Positive Image 
Removal 

7 

MIDI Pipeline Major False Positive Text 
Removal 

31 

UAMS Acronym Removal 52 

PHI/PII Removal 53 
 
Table 12 - Pixel Data PHI leaks analysis using MIDI pipeline compared to UAMS Curated 
Datasets 

MIDI Pipeline vs UAMS Curated Dataset PHI/PII Leaks  

PHI Leak Type Count 

None 105 

Patient ID 52 
 
Overall, the UAMS and MIDI pipelines concurred on most of the files that were in UAMS’s 
Curated dataset of 371,793 instances. In total, 63 images contained false positives, a rate of 
0.015%. Of the remaining PHI leaks, all were either Acronyms being failed to be removed or 
Patient IDs being failed to be removed. The Patient IDs are a special case where we are 
removing them during our post-processing in the DICOM header data, therefore the algorithm is 
gaining no information from the header analysis to assist with the classification of text 
recognized in the pixel data as being a potential specific patient identifier. This is an issue that 
should be further investigated in a future iteration. One possible solution is to gather patient IDs 
during a pre-processing step and to use that information during de-identification. 

Run using Source Dataset comparing MIDI Pipeline output with Source Dataset 
Below are the discrepancies between the Source dataset and MIDI pipeline runs on the source 
dataset. There were too many image changes to perform a human review for each one, 
therefore, we performed a review on a random sample of 173 images. As a reminder, the 
Source Dataset contained roughly 18,000 more images than the TCIA dataset due to CTP 
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having quarantined some due to the header information indicating a high risk of containing 
burned-in PHI/PII (e.g., being secondary capture images such as screenshots). This is where 
the discrepancy in the comparison between MIDI pipeline with the Source and UAMS curated 
datasets comes from. 
 
As shown in Table 13, 173 images were inspected and 171 of them correctly had PHI/PII 
removed, resulting in a 1.2% false positive rate. Table 14 continues to explore the 173 instances 
based on what was correctly de-identified and what leaked. Of the 173 instances, there were 2 
images with no PHI/PII (false positives) and 49 were completely successful in removing all 
PHI/PII. 120 images were partially de-identified, but still resulted in PHI/PII leaks. These 
included Patient IDs, Institution names and acronyms, and names. While a 28% success rate is 
well below satisfactory, 100% of the images examined were partially de-identified meaning a 
human-in-the-loop would have been flagged to inspect them based on that criterion. These are 
also all images that were quarantined by CTP, either as part of the data transfer process or as a 
pre-processing step. 
 
Table 13. Sample of pixel data discrepancies comparing MIDI Pipeline and Source datasets  

Sampled MIDI Pipeline vs Source False Positive Discrepancies 

Discrepancy Type Count - 173 instances 

PHI/PII Removal 171 

MIDI Pipeline False Positive Image Removal 1 

MIDI Pipeline Minor False Positive Image 
Removal 

1 

 
 
Table 14. Sample of pixel data PHI leaks comparing MIDI Pipeline and Source datasets 

Sampled MIDI vs Source PHI/PII Leaks 

Type of PHI/PII Leak Count - 173 instances 

None 51/173 - 2 didn’t have PHIs, 49 completely 
successful 

Patient ID 107 

Place/Institution Acronym 89 

Person Name 2 
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Partial Person Name De-identification  9 
 
 

 

 

 
Figure 9. Examples of false positives found during MIDI pipeline runs. 
 
Figure 9  are all examples of False Positives by the MIDI pipeline. In the first and third rows, the 
data has been majorly altered and would be unusable for analysis. In the middle row, the text ‘R’ 
and ‘L’ (important indicators of laterality) is incorrectly removed, but otherwise the pixel data 
remains intact.  
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IV.b Header Data 

Run using MIDI-B Validation Dataset comparing MIDI Pipeline output with Answer 
Key 
The following is a discussion of the validation script results of the final MIDI pipeline run on the 
MIDI-B Validation dataset. Table 15 details the unique header errors reported by the validation 
script, split into the six error types that the validation script reports. Notice a large number of 
errors are due to UIDs not being changed or not consistent. We discuss why this is the case in 
the below section titled “UID not Changed and UID not Consistent”. Since these errors would 
largely be fixed with a new run, we note both the total error percent with the UID errors (4.99%) 
and without the UID errors and actions (0.49%).  

Table 15. Unique header error counts with MIDI-B Validation Dataset 

Error Type Count of Unique 
Errors 

Total Required 
Actions 

Percent Error (%) 

Text not Removed 9 3036 0.29 

Text not Retained 380 83368 0.45 

Text not Null 50 5940 0.84 

Tag not Retained 63 10455 0.60 

UID not Changed 96 6402 1.50 

UID not Consistent 5177 6402 80.87 

Total 5775 115603 4.99 

Total Without UID Errors 
or Actions 

502 102799 0.49 

 

Text not Removed 

Table 16. Text not removed errors with MIDI-B Validation Dataset 

Original File Value De-Identified File Value Data Element Name 

LUNG CA ACCRIN 6668 at 
Harris Community Clinic 

LUNG CA ACCRIN 6668 at  
Community Clinic 

Additional Patient History 

LUNG CA ACCRIN 6668 at LUNG CA ACCRIN 6668 at  Additional Patient History 
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Harris Community Clinic Community Clinic 

Admitted to Palmer-Greene 
Memorial on 20170803 

Admitted to  Memorial on 2017-
06-29 

Additional Patient History 

PORTAL at Burke-Perkins Clinic PORTAL at  Clinic Image Comments 

Admitted to Alvarado, Atkins and 
Reid Memorial on 20170902 

Admitted to  and  on 205-05-03 Image Comments 

3MM VENOUS at Watkins, 
Brown and Reeves Community 
Clinic 

3MM VENOUS at ,  and   
Community Clinic 

Image Comments 

Supine at Fuentes-Gibson 
Hospital 

Supine at   Hospital Image Comments 

MRI BREAT/UNILAT WO/WITH 
CON for Colleen Case 

MRI BREAT/UNILAT WO/WITH 
CON for  Case 

Study Description 

P4 for Sierra Townsend P4 for Sierra   Study Description 

 

Table 16 show the nine remaining text not removed errors are due to two error types; partially 
de-identified places (ex: ‘Harris Community Clinic’ being changed to ‘Community Clinic’) and 
partially de-identified names (ex: ‘Sierra Townsend’ being changed to ‘Sierra’). The partially de-
identified names are more serious errors than the partially de-identified places. These represent 
areas where the Google AI can still improve its de-identification algorithm. 
 
Text Not Retained 

Table 17. Text not retained errors by error type with MIDI-B Validation Dataset 

Text not Retained 
Error Classification 

Classification Subtype Count 

Real Error AI False Positive 91 124 

Post Processing False Positive 5 

Incorrect Script Configuration 28 

Correct Action 
DICOM Standard says to not 
retain the text 

26 148 
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Group decision to remove text to 
prevent PHI/PII leak 

118 

Text removed is actually PHI/PII 
4 

Validation Script Error 108 

Total 380 

 

Real Errors 
There are 124 errors of text not being retained that are considered real errors. These are 
primarily due to GCP incorrectly identifying something as a name or IP address and removing it. 
There are also five instances of the Post Processing script incorrectly identifying a string of 
integers as a patient ID within a data element.  These types of errors are all represented by the 
below examples. There are also 28 unique instances of Referenced SOP Class UID being 
removed due to faulty configuration of the script. In future work, Referenced SOP Class UID 
should be moved to the Healthcare API script ‘keep’ list from the ‘remove’ list. 
 
Table 18. Examples of real text not retained errors with MIDI-B Validation Dataset 
 
Original File Value De-Identified File Value Tag Name 

/BD/PRO  Pelvis w&w/oCon 
at FMCC 

/BD/PRO  Pelvis w&w/1 Study Description 

MR BREASTUNI UE for 744-
55-9698 

MR UE for  Study Description 

2.3.0.81  Software Versions 

[‘Rad:’, ‘hanning’, ‘7.00000 
mm’] 

[‘Rad:’, ‘’, ‘7.00000 mm’] Convolution Kernel 

Random Walker 3D Random 3D Code Meaning 

8#200187150100100959010
0#30303040#1030 

8#11#1#1030 Acquisition Device 
Processing Code 

RM jamy brzusznej lub 
miednicy malej bez 

RM  brzusznej lub miednicy 
malej bez 

Performed Procedure Step 
Description 

CADstream 4.1.0.204 CADstream Manufacturer’s Model Name 
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Validation Script Errors 
The 108 Text not Retained errors come from private data elements that the validation script 
says are being incorrectly removed. We examined the de-identified files for all of these errors 
and found that these data elements are still present post de-identification, as shown in Figures 
10 and 11 below. There is some sort of discrepancy in the validation script that is causing it to 
incorrectly interpret these elements as being removed when they aren’t. The below figures show 
the errors reported, and the before and after files where the error supposedly takes place. The 
data elements are all still present in the de-identified file, as they should be. 
 
 Table 19. Examples of validation script ‘Text not Retained’ errors with MIDI-B Validation 
Dataset 
 

Original File Value De-identified File Value Tag Name 

[] 1 Private tag data 

[] [91.100031618, -
57.3031235132, 
6.6406250391, 1.0] 

Private tag data 

[] [0.0, 55.0781249609, 0.0, 
1.0] 

Private tag data 

[] VOI Private tag data 
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Figure 10. File where Text not Retained errors supposedly occurred, before de-identification. 

 
Figure 11. File where Text not Retained errors supposedly occurred, after de-identification. 
  
Correct Actions 
 
Table 20. Text not retained actions incorrectly labeled as failures by validation script with MIDI-
B Validation Dataset 

Correct Action Subtype Action Count 

DICOM Standard says to remove 26 

Group decision made to remove 118 

PHI/PII Removal 4 

Total 148 

The 148 Text not Retained ‘Correct Actions’ can be further broken down into three subclasses 
as seen in Table 20. The first are data elements being removed that, according to the DICOM 
Standard, should be removed. These elements are all (with the exception of Gantry ID and 
Detector ID) in the Icon Image Sequence. It is unclear why the TCIA validation script is flagging 
errors when these elements are removed when, according to the DICOM Standard, that is the 
correct way to handle them. There are 26 unique ‘errors’ of this type. 
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The second class of ‘Correct Actions’ refers to instances where the MIDI pipeline removes 
values in data elements that don’t need to be removed and are usually kept, but were added to 
the remove list for the MIDI pipeline based on group consensus. All 118 of these ‘errors’ come 
from the Text Value data element. In Phase 3 of the MIDI project, we saw multiple instances of 
person initials appearing in the synthetic MIDI-B datasets (it should be noted that the MIDI 
datasets were created based on TCIA’s experience with where they have encountered PHI/PII 
in DICOM files in the past). These initials are present without context (e.g., ‘RS’), making it very 
challenging to identify them as initials. It was determined by the group that since Text Value 
almost never contains information crucial to scientific research, the best way to deal with this 
issue is to remove all text in Text Value. This results in 118 ‘errors’.  

The third and final class of ‘Correct Actions’ is instances where the MIDI pipeline removes 
PHI/PII and the validation script incorrectly identifies this as a Text not Retained error. There are 
only four examples of this. One example is in Protocol Name, where “4.6 COLONOSCOPY 
(ACRIN) DR.IYER for Nicholas Gomez” is changed to “4.6 COLONOSCOPY (ACRIN) for “ by 
the MIDI pipeline. Here the MIDI pipeline is removing a patient name and a doctor name. 
However, the validation script identifies this as a Text not Retained error. 

Tag not Retained and Text not Null 
 
There are 63 “Tag not Retained" errors. These are data elements that according to the DICOM 
standard should always be present in a DICOM file. These errors all come from data elements 
that weren’t present in the original input files. Since our de-identification process does not create 
these data elements, errors are flagged by the validation process. However, this is an issue with 
the original data, not a result of the de-identification process.  
50 errors are “Text not null” errors. These are for data elements that according to the DICOM 
standard should not be empty. These errors are all caused due to the same reason as the tag 
not retained errors, because of the data elements being empty or absent in the original files, not 
because of the de-identification process. We confirmed this by running the validation script on 
the original, non-de-identified dataset which resulted in exactly the same number of “Tag not 
Retained” and “Text not Null” errors.  
 
UID not Changed and UID not Consistent  
 
A large majority of the UID errors were due to the issue with files being dropped by the 
Healthcare API discussed in the ‘Results: Dropped Files’ section. This issue was fixed by 
Google during the later part of Phase 4, so our last run of the MIDI-B Validation dataset was 
done before this fix. As a result, there are many reported errors for the MIDI-B Validation 
dataset that wouldn’t be present if the pipeline were run again today. This is evidenced by the 
MIDI-B Test dataset run discussed in the section below, which originally saw the same kinds of 
UID errors due to the dropped files issue and no longer had those errors when we reran the 
pipeline on that dataset after Google fixed the issue. 
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The UID errors are all due to issues with how the mapping files were created, not issues with 
the de-identification capability of the pipeline. All 96 UID not Changed errors were due to 
dropped files. 540 files were being dropped during the GCP de-identification stage of the 
pipeline due to an issue with the Operation Metadata feature discussed in the Dropped Files 
section below. Our workaround for this issue was to run a version of the pipeline without 
Operation Metadata on the 540 files being dropped. In order to still include these files in the UID 
mapping CSV file, we had to change this version of the pipeline to not change the three main 
mapping UIDs (Study, Series, and SOP Instance UID). We then manually added these 
unchanged UIDs to the UID mapping file. Because these UIDs were unchanged for the dropped 
files, we got 96 UID not Changed errors on these three UIDs. The dropped files workaround 
also resulted in 5177 “UID not Consistent” errors. “UID not Consistent” errors were calculated by 
looking at the UID mapping file and checking that the UIDs before and after match the UIDs in 
the DICOM files. In the main run of the pipeline, the Operation Metadata feature tracks changes 
made to UIDs and then creates the UID mapping file accordingly. However, in the secondary 
run on the dropped files, changes made to UIDs are not tracked in the UID mapping file due to 
the lack of the Operation Metadata feature. This results in 4850 “UID not Consistent” errors. The 
remaining 327 “UID not Consistent” errors are from UIDs in private data elements.  We handle 
private data elements in the post processing script by automatically keeping all private data 
elements listed as safe by TCIA and automatically removing the rest (more details can be found 
in section Methods: Post Processing Scripts). This results in 327 private UIDs being removed. 
The post processing script isn’t configured to track these changes in the mapping files, so this 
results in UID not Consistent errors.  

Run using MIDI-B Test Dataset comparing MIDI Pipeline output with answer key 
The following results are from the most recent run of the MIDI pipeline on the MIDI-B Test 
Dataset. 

Text not removed 

There are 33 unique Text not Removed errors. All except one of these are partially de-identified 
hospital names (ex:Mack Memorial changed to just 'Memorial'). The only other Text not 
Removed error is a Referenced File ID that isn’t being removed. This can be fixed in the future 
by adding Referenced File ID to the Healthcare API script ‘remove’ list. 

Text not retained 

The validation script flagged 674 of the unique changes made by the MIDI pipeline to the 
DICOM files as Text not Retained errors. However, closer examination by the team determined 
that not all these changes were actually errors. The MIDI team went through all of the errors and 
classified them as either ‘real errors’, ‘correct actions’, ‘validation script errors’ or ‘unknown’. Of 
the 674 Text not Retained errors, 195 were classified as ‘real errors’, 270 were classified as 



 

 

43 

‘correct actions’, 151 were classified as ‘validation script errors’, and 58 were classified as 
‘unknown’. 

 

 

Table 21. Text not retained unique changes flagged by validation script broken down into real 
errors, correct actions, validation script errors, and unknown. 

Text not Retained 
Error Classification 

Classification 
Subtype 

Count 

Real Error AI False Positive 142 195 

Post Processing False 
Positive 

14 

Incorrect Script 
Configuration 

39 

Correct Action DICOM Standard says 
to not retain the text 

70 328 

Group decision to 
remove text to prevent 
PHI/PII leak 

250 

Text removed is 
actually PHI/PII 

8 

Validation Script Error 151 

Total Text not Retained Errors 674 

Correct Actions 

The 270 'Correct Actions' can be further categorized into three subclasses. The first involves 
data elements that should be removed according to the DICOM Standard. All of these elements, 
except for Gantry ID and Detector ID, are located in the Icon Image Sequence. It is unclear why 
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the TCIA validation script is flagging errors when these elements are removed, as this action 
aligns with the DICOM Standard. There are 70 distinct 'errors' of this type. 

The second category of ‘Correct Actions’ pertains to cases where the MIDI pipeline removes 
values from data elements that don't actually need to be removed and are typically retained. 
These elements were added to the removal list for the MIDI pipeline based on group consensus. 
All 192 of these ‘errors’ stem from the Text Value data element. As discussed in the 
Comparison of MIDI pipeline output with Answer Key using MIDI-B Validation Dataset section, 
the group decided to remove all instances of Text Value.  

The third and final category of ‘Correct Actions’ involves instances where the MIDI pipeline 
removes PHI/PII, but the validation script mistakenly flags this as a Text not Retained error. 
There are only eight such cases. One example occurs in Reconstruction Method, where "3D 
Kinahan - Rogers" is changed to "3D" by the MIDI pipeline. The pipeline is correctly removing a 
name, but the validation script incorrectly classifies this as a Text not Retained error. 

Real Errors: 

The ‘Real Errors’ can be split into three subclasses. The first subclass is data elements 
removed due to the script configuration being incorrect. All 39 of these errors are from 
Referenced SOP Class UID being changed. Unlike other UIDs, class UIDs should not be 
changed at all during de-identification. All other class UIDs were put in the ‘keep list’ of the GCP 
script, so they were not changed. Referenced SOP Class UID was not. This configuration 
should be changed in future versions of the script, which would remove these errors. 

The second subclass of ‘Real Errors’ is of errors due to the GCP AI incorrectly identifying and 
then removing PHI/PII that is not actually PHI/PII. As stated previously in this report, the pipeline 
is split into the GCP Healthcare API phase and the post processing phase. The GCP Healthcare 
API handles, among other things, searching through free text values to find person names and 
IP addresses. The 142 GCP AI false positives all come from Google’s AI identifying and 
removing names or IP addresses that are not actually names or IP addresses. For instance, in 
Software Versions, the value ‘3.3.1.35’ is removed since the Google AI identifies it incorrectly as 
an IP address. In Study Description, ‘MR Breast’ is changed to ‘MR ‘ since the Google AI reads 
‘MR’ as ‘Mr’ and then identifies ‘Breast’ as a last name. 

The third and final subclass of ‘Real Errors’ is of errors due to the post processing script 
identifying and then removing PHI/PII that is not actually PHI/PII. The post processing script, 
among other things, handles removing Patient IDs and shifting dates. There are 14 post 
processing false positive errors. They are due to two types of errors. The first is the post 
processing script incorrectly identifying something as a patient ID and then removing it. The 
script is configured to identify any strings of integers longer than 6 but less than 15 (with the 
exception of integers strings within specific data elements where we would expect to find long 
integers strings that are not patient IDs) and replace the strings with ‘1’ (this is done so that we 



 

 

45 

can easily see where the post processing script found a patient ID for testing purposes. Future 
versions of the pipeline can change this to replacing the patient ID with a blank space instead). 
The group consensus is that strings of integers over 6 but less than 15 (with the exception of the 
tags previously discussed) are almost always going to be patient IDs, and won’t contain any 
crucial research information. However, there are still a small number of resulting false positives. 
For instance, in Series Description ‘Nodule 6 - Annotation 114086 evaluations’ is changed to 
‘Nodule 6 - Annotation 1 evaluations’. The second type of post processing false positive error is 
from the post processing script incorrectly identifying something as a date and then shifting it. 
For instance in Image Comments, ‘<(5033/11/185)-(5033/11/9)>’ is changed to ‘<(5033/11/185)-
(501932-02-20)>’ due to the post processing script identifying ‘33/11/9’ as November 9th, 1933. 
This could be fixed in future script versions by changing the date finder function to not identify 
something as a date if it is a subsection of a string of integers (‘5033/11/9’ should not be 
identified as a date due to the 50 leading the 33). 

Validation Errors: 

The 151 errors come from Private tag data elements that the validation script says are being 
incorrectly removed. We examined the de-identified files for all of these errors and found that 
these tags are still present post de-identification. There is some sort of error in the validation 
script that is causing it to incorrectly interpret these elements as being removed when they 
aren’t. The below figures show the errors reported, and the before and after files where the error 
supposedly takes place. The data elements are all still present in the de-identified file. 
 
 
Tag not Retained and Text not Null 
There are 89 tag not retained errors. These are tags that according to the DICOM standard 
should always be present in a DICOM file. These errors all come from tags that weren’t present 
in the original input files. Since our de-identification process does not create these tags, errors 
are flagged by the validation process. However, this is an issue with the original data, not a 
result of the de-identification process.  
 
71 errors are text not null errors. These are for tags that according to the DICOM standard 
should not be empty. These errors are all caused due to the same reason as the tag not 
retained errors, because of the tags being empty or absent in the original files, not because of 
the de-identification process. We confirmed this by running the validation script on the original, 
non-de-identified dataset which resulted in the same exact number of tag not retained and text 
not null errors.  
 
UID not Changed and UID not Consistent  
The UID errors are all due to issues with how the mapping files were created, not issues with 
the de-identification capability of the pipeline. The only UID not changed error occurs in the 
private data element PET pulse_frame_id. This UID is most likely not changed due to the VR 
not being a UID VR. 
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The remaining 365 UID not Consistent errors are from private UIDs. We handle private data 
elements in the post processing script by automatically keeping all private data elements listed 
as safe by TCIA and automatically removing the rest (more details can be found in section 
Methods: Post Processing Scripts). This results in 365 private UIDs being removed. The post 
processing script isn’t configured to track these changes in the mapping files, so this results in 
UID not Consistent errors. 

Run using Source Dataset comparing MIDI Pipeline output with UAMS Curated 
Dataset 
The following are the Comparison Framework results of the final MIDI pipeline run on the source 
dataset. The Comparison Framework collects all the discrepancies between the Source dataset 
and MIDI pipeline outputs. Due to the massive size of the dataset, we aggregated the results 
into ‘Unique Discrepancies’. For example, in a Study Description, the original value 
‘MR_COMPLETE$123456$’ is changed by UAMS to ‘MR_COMPLETE’ and by MIDI pipeline to 
‘MR_COMPLETE$1$’ (since 1 is the replacement value for patient IDs in the MIDI pipeline) 555 
times. This corresponds to 555 total discrepancies and one unique discrepancy. Table 22 
identifies the number of unique discrepancies. 

Table 22. Unique count of discrepancies between UAMS Curated dataset and MIDI pipeline 
output using the Source Dataset 

Discrepancy Type Unique Discrepancy Count 

Correct Action 6102 

False Negative (but not PHI leak) 847 

False Positive 918 

PHI Leak 21 

Grand Total 7888 
 

False Negatives 

There were 868 unique false negatives. Of these 868 false negatives, 21 of them were potential 
PHI leaks. The potential PHI leaks fall into the following two categories: 

● In Date of Calibration, there was a list of dates which were left unshifted due to the post-
processing script not being formulated to look through lists within data elements. This 
can be fixed going forward by updating the post-processing script.  
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● In Image Type, there was one instance of a datetime that wasn’t caught by the post-
processing because the Image Type is a Code String VR. The post-processing script 
does not look through Code String VRs, as Code String VRs were not identified as a VR 
where PHI/PII might be found. This should be re-evaluated going forward. 

● In Protocol Name, ‘UAMS’ was left in the element value. The issue of hospital/medical 
center acronyms not being removed was one we also saw in the synthetic MIDI dataset 
results. 

The remaining 847 false negatives do not contain any potential PHI leaks, but rather are data 
elements that should be removed for other reasons, such as to maintain formatting or dataset 
integrity issues. 22 of these are Overlay and Curve data elements according to the DICOM 
Standard, these should always be removed, unless the Clean Graphics Option is specified and 
supported.  The MIDI pipeline removes the values, but does not remove the data elements 
entirely, which is not in accordance with DICOM Standard. This issue, along with all other 842 
false negatives not containing PHI, can be fixed in future iterations of this work by adding these 
data elements to the Healthcare API script ‘remove’ list. 

False Positives 

There are 918 unique false positive discrepancies. They are all detailed below in Table 23 
below. The most common examples of false positives are from the post-processing script falsely 
identifying patient IDs or dates, or the GCP de-identification API falsely identifying names. For 
instance, in Manufacturer Model’s Name, ‘Aurora’ is removed because the GCP API identifies it 
as a name. In Instance Number, the post processing script removed ‘1320000’ because it 
identifies it as a patient ID (Instance Number is very rarely so many digits, so it is unusual for 
this kind of false positive to occur). Another false positive we have seen before in the synthetic 
MIDI datasets is the GCP API falsely identifying IP Addresses. In Software Version, 
‘5.3.1\5.3.1.3’ is changed to ‘5.3.1\’ due to the GCP API identifying ‘5.3.1.3’ as an IP address. Of 
the 918 False Positive discrepancies, 713 are due to issues with the Healthcare API’s AI and 
266 are due to issues in the Post Processing script. 

Table 23. False positives being reported by tag name 

Tag Name Error 
Count 

Tag DS Source Value MIDI Value TCIA Value Reason for False Positive 

Patient 
Orientation 
Code 
Sequence-
Context Group 
Version 

42950 (0054,0410)-
(0008,0106) 

2002090400000
0.000000 

20010524000 20020904000000.0
00000 

This is a date being shifted, 
however according the the 
DICOM Standard Context Group 
Version should not be altered 
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Radiopharmace
utical 
Information 
Sequence-
Context Group 
Version 

28016 (0054,0016)-
(0008,0106) 

2002090400000
0.000000 

20000901000 20020904000000.0
00000 

This is a date being shifted, 
however according the the 
DICOM Standard Context Group 
Version should not be altered 

Patient Gantry 
Relationship 
Code 
Sequence-
Context Group 
Version 

21475 (0054,0414)-
(0008,0106) 

2002090400000
0.000000 

20010920000 20020904000000.0
00000 

This is a date being shifted, 
however according the the 
DICOM Standard Context Group 
Version should not be altered 

Software 
Version(s) 

17398 (0018,1020) 5.3.1\5.3.1.3 ['5.3.1', ''] 5.3.1\5.3.1.3 GCP API incorrectly identifies an 
IP address 

Manufacturer's 
Model Name 

1253 (0008,1090) Aurora II   Aurora II GCP API incorrectly identifies a 
person name 

Content 
Sequence-Text 
Value 

210 (0040,A730)-
(0040,A160) 

Mammo 8.3 1 Mammo 8.3 The group made the decision to 
replace Text Value with 1 to avoid 
potential PHI leaks 

Secondary 
Capture Device 
Software 
Version(s) 

149 (0018,1019) 8.4.3.16   8.4.3.16 GCP API incorrectly identifies an 
IP address 

Study 
Description 

9 (0008,1030) IR CVL > 5 YRS 
OLD 

IR CVL > IR CVL > 5 YRS 
OLD 

GCP API is configured to remove 
the 'age' infotype. This can be 
changed in the future 

Procedure 
Code 
Sequence-Code 
Meaning 

9 (0008,1032)-
(0008,0104) 

IR CVL > 5 YRS 
OLD 

IR CVL > IR CVL > 5 YRS 
OLD 

GCP API is configured to remove 
the 'age' infotype. This can be 
changed in the future 

Instance 
Number 

4 (0020,0013) 1320000 1 1320000 Post processing script incorrectly 
identifies a patient id 

Detector 
Information 
Sequence-
Collimator/grid 
Name 

4 (0054,0022)-
(0018,1180) 

LEHR   LEHR GCP API incorrectly identifies a 
person name 
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Acquisition 
Device 
Processing 
Code 

2 (0018,1401) 8#13511510510
01009590100#4
04000#1040#20
350#35220 

8#11#1#1040#20
350#35220 

8#13511510510010
09590100#404000#
1040#20350#35220 

post processing incorrectly 
identifies a patient id 

Detector 
Description 

2 (0018,7006) 8-03.00 1998-03-30 8-03.00 Post processing script incorrectly 
identifies and then shifts a date 

Series 
Description 

2237 (0008,103E) ;;;Coronal.38/Co
ronal 

;;;Coronal./Corona
l 

;;;.38/Coronal Healthcare API falsely identifies a 
name 

 

Correct Actions 

Table 24. Unique correct actions taken by MIDI pipeline based on subtype that were flagged as 
discrepancies between MIDI pipeline output and UAMS Curated Dataset. 

Correct Action Subtype Unique Correct Action Count 

MIDI Pipeline Correctly Removing 16 

MIDI Pipeline Correctly Retaining 969 

UAMS Curation 1223 

Expected Discrepancy 3848 

Formatting 46 

Total 6102 
 

There are 6102 unique correct actions as shown in Table 24. These can be further split into five 
subcategories, which are discussed below: 

- MIDI PipelineCorrectly Removing discrepancies refer to instances where MIDI pipeline 
correctly removes something that UAMS misses. 

- MIDI Pipeline Correctly Retaining discrepancies refer to instances where MIDI pipeline 
safely retains something that UAMS removes. Some of these instances are because 
MIDI pipeline’s AI algorithm is often more specific with PHI/PII removal than UAMS. For 
instance, UAMS commonly removes entirely free text values that contain PHI rather than 
selectively editing the text, while the MIDI pipeline de-identifies the values and retains 
more information. As an example, Study Description may contain: ‘[3/10/2008 11:29 AM 
DOE JOHN]CT LUMBAR SPINE   DR. SMITH  123-456-7899    HISTORY OF 
MULTIPLE MYELOMA   AND L4-L5 INFECTION.  PATIENT STATES INFECTION  
GONE LAST JUNE12    PLEASE EVALUATE L 4-5 FOR FUSION  . HERNIATED DISK’ 
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(Note: This has been de-identified from the original). While UAMS removes this text in 
its entirety, MIDI pipeline de-identifies the text, changing it to: ‘[2007-04-23 11:29 AM  
]CT LUMBAR SPINE HISTORY OF MULTIPLE MYELOMA   AND L4-L5 INFECTION.  
PATIENT STATES INFECTION  GONE LAST 0000-07-16    PLEASE EVALUATE L 4-5 
FOR FUSION  . HERNIATED DISK’. 

- UAMS Curation discrepancies are due to UAMS changing values for curation purposes. 
For instance, there are many instances of UAMS changing Body Part Examined due to 
the value not accurately reflecting the body part in the corresponding image. There are 
also many times where UAMS changes a value for DICOM conformance reasons. For 
example, in the element Laterality, UAMS removes the value ‘B’ as it is not a valid value 
for the Laterality element. The MIDI pipeline was built purely to de-identify data, not 
curate or correct DICOM conformance issues in data, so it leaves these values alone. 
For the purposes of this project (which is to evaluate the de-identification ability of the 
MIDI pipeline), this action is correct. In future phases, the MIDI pipeline could be built out 
further to do many of the aspects of curation and DICOM conformance that UAMS does 

- Excepted Discrepancies are discrepancies where UAMS curation and MIDI pipeline 
differ in ways expected. The main example of this is in date shifting. Both UAMS curation 
and MIDI pipeline shift dates, but using different seeds and ranges, so the end result is 
different. Despite the end results being different, both UAMS curation and MIDI 
pipeline’s actions are correct. The header metadata also contains values where de-
identification should produce different results. For instance, Source Application Entity 
Title should be changed to specify the tool used for de-identification. Since UAMS 
curation and MIDI pipeline use different de-identification tools, these values are different. 
There are also 16 unique instances where the value of Text Value is changed to ‘1’. As 
discussed in the MIDI-B Dataset Results sections, this was a decision made by the 
group in order to prevent PHI/PII leaks. 

- Formatting discrepancies are examples where the UAMS curation and MIDI pipeline 
values are essentially the same save for minor formatting changes. For example, both 
UAMS curation and MIDI pipeline remove a name from the string in a Protocol Name 
data element. However, MIDI pipeline leaves an additional white space in place of the 
name, resulting in a minor difference between the two values. 

Run using CTP Dataset comparing MIDI Pipeline output with UAMS Curated 
Dataset 
The following are the Comparison Framework results of the final MIDI pipeline run on the CTP 
dataset seen in Table 25. The below tables show the unique and total discrepancy count 
between the UAMS Curated dataset and the MIDI pipeline output. Since the dataset had 
already been run through the CTP, certain de-identification aspects of the MIDI pipeline were 
turned off for this run. For instance, dates in ‘DA’ and ‘DT’ data elements did not require shifting 
as they had been shifted by CTP. 
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Table 25. Comparison Framework results of the final MIDI pipeline run on the CTP dataset. 

Discrepancy Type Unique Discrepancy Count 

False Positive 697 

False Negative (but not PHI/PII leak) 834 

PHI/PII Leak 13 

Correct Action 7170 

Unknown 787 

Total 9501 
 

Unknown 

There are 787 unique unknown discrepancies. These are most likely due to an issue with 
duplicate UIDs in the dataset. The original Source dataset contained around 300 files with 
duplicate UIDs. This led to the Comparison Framework to sometimes compare files that are not 
actually the same files, resulting in reported discrepancies that do not accurately reflect the 
contents of the MIDI pipeline and UAMS curated outputs. The issue with duplicate files was 
compensated for in the future versions of the Comparison Framework that were run on the 
Source dataset, so these issues were not present there. 

False Negatives 

The False Negatives are mostly the same as from the Source Results. The slightly smaller 
number of discrepancies is most likely due to the CTP dataset being a smaller subset of the 
Source Dataset. 

PHI/PII Leak 

The PHI/PII Leaks in the CTP dataset are all due to the error where ‘UAMS’ is left in Protocol 
Name. This error is discussed more in the Source Results section. The CTP results do not 
contain the Date of Calibration errors due to the relevant files not being in the CTP dataset. 

False Positives 

Table 26. False positives by subcategory of either Healthcare API or post processing errors. 

False Positive Subcategories Unique False Positive Count 

Healthcare API false positive 690 
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Post Processing false positive 7 

Total 697 
There were 697 False Positives which are all a subset of the False Positives discussed in the 
Source Dataset Results section. 690 of these are due to issues with the Healthcare API’s AI 
(such as the AI incorrectly identifying Software Versions as IP addresses) and 7 are issues from 
the Post Processing script, such as incorrectly removing long strings of integers due to 
mistaking them for patient identifiers. These issues are all discussed further in the Source 
Dataset Results section.The decrease in False Positives from the Source Dataset to the CTP 
Dataset is likely due to the CTP dataset being a smaller subset of the Source Dataset. 

Correct Actions 

Table 27. Correct actions taken that were flagged by comparison framework 

Correct Action Subtype Unique Correct Action Count 

MIDI Pipeline Correct Removal 5 

MIDI Pipeline Correct Retaining 335 

UAMS Curation 1223 

Expected Discrepancy 5556 

Formatting 45 

PHI/PII removed 6 

Total 7170 
 

The ‘Correct Actions’ are mostly the same as discussed in the Source Dataset Results section. 
There are more Expected Discrepancies than in the Source Dataset Comparison due to private 
data elements being examined in the Comparison Framework when the CTP Dataset was 
examined, but not when the Source Dataset was examined. As discussed in the Methods: Post 
Processing Scripts section, MIDI pipeline removes all private data elements that are not known 
to be safe to keep. UAMS curation still keeps some of these elements, and this flags 5534 
unique instances of private data elements being removed by the MIDI pipeline but kept by 
UAMS curation. Other than this, there is an overall decrease in ‘Correct Action’ discrepancies. 
This could be due to the CTP dataset being smaller than the Source dataset, meaning all else 
equal, there would be fewer discrepancies in the CTP comparison than the Source comparison. 
The other main change from the Source results is that there are six instances of PHI/PII being 
left by UAMS curation that the MIDI pipeline catches and removes. For example, in an instance 
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of Performed Procedure Step Description contains a date that the MIDI pipeline finds and 
removes, but UAMS curation leaves this value untouched.  

IV.c Dropped Files 
During pipeline runs of the Source dataset, files were being dropped during the Healthcare API 
run. It was a total of 540 images, a small subset of the whole dataset. It was identified to be 
linked to how we track the UID changes through the use of the FHIR store and a FHIR output. 
When this option was turned off the images ran fine. However, this resulted in the 540 images 
not having their UIDs changed, increasing our error rate. This was reported to Google and 
identified as a code error on their backend. They were able to complete the fix and push the 
code for us to rerun the pipeline. At time of this publication, this fix is part of the public beta 
version that we describe here. 

After this fix by Google, there remained a smaller subset of 26 images still failing to pass 
through the pipeline at the point of the Healthcare API. This has been identified as a 
Transcoding Error in the logs. This has been reported to Google, but it is unclear what the issue 
is at the time of writing. We are attempting to provide the team with example images that are 
clean of PHI/PII so they can replicate the issue. 

One final dropped files issue encountered was a large number of files being dropped without 
logging during one of our runs of the pipeline. This was fixed by rerunning the dropped files. We 
are assuming that this is due to the large number of files we attempted to run all at once, as 
smaller subsets of data never encountered this issue. This is something to be aware of in any 
operational deployment; any runs of the pipeline should check that the total number of files in 
the output equals the number in the input.  

IV.d Run Performance 
For the Synthetic datasets, runtimes of the Healthcare API took around 5 minutes to complete, 
and post-processing script runtimes took around 10 minutes. For the Source dataset, which 
contains 393,899 files, the Healthcare API runtime took about 8 minutes and the post-
processing script took about an entire week to complete. This is partially due to the manual 
intervention needed to run the post-processing script. The post-processing script would time out 
after an hour and required the user to manually hit go to continue running it. We parallelized this 
process, allowing the user to run separate batches of files all at once. With this fix, the post-
processing script was able to run on the Source dataset in an hour. 

IV.e Cost Analysis 
The cost of the MIDI pipeline is dependent on a few factors. This includes the total number of 
files being de-identified, number of elements inspected, number of elements transformed, and 
how much and how long data is stored. Google provides a detailed guide on pricing26. 
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As an example of the cost we incurred, for the Source dataset containing 393,899 instances, it 
cost $572.62 for Healthcare API use, $41.81 for compute (analysis), and $5.36 for Cloud Run 
Functions (post-processing) as shown in Figure 12. This results in a total cost of $619.79 per 
run or $1.57 per 1000 images. 

 

Figure 12. Cost for a single MIDI pipeline run of the Source Dataset. 

V. Future Considerations & Recommendations 
De-identification of medical imaging data, a legal requirement, is vitally important for data 
sharing, educational training, and the advancement of research, for example, when training 
machine learning and artificial intelligence algorithms which require large volumes of  training 
data. Through this project and the MIDI-B challenge we observed different processes attempting 
to accurately remove PHI/PII from images. However, in all cases, no method had a 100% 
success rate and some small amounts of PHI/PII were still able to leak through. This means that 
in a production setting, a human-in-the-loop is required to review the cases of false positives 
and fields of concern for leaked PHI/PII (i.e., known issues of false negatives), in order to 
achieve the desired threshold of accuracy of 100%, especially when it comes to removing 
PHI/PII. We believe that the MIDI pipeline described here achieves a level of accuracy that 
makes it possible to configure a production setting with an appropriate human-in-the-loop 
process that substantially reduces the human workload. 

We also believe that the MIDI pipeline is sufficiently accurate for the purpose of checking 
whether submitted data (e.g., to NCI’s IDC) has been properly de-identified. The Healthcare API 
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logs all changes in an image using the FHIR store which can then be analyzed in BigQuery. The 
post-processing script also makes changes to images and can be logged as csv files, which will 
need to be fully configured and tested in future runs. Otherwise, all changes made to images 
can be analyzed as has been done in this stage by doing a direct comparison between input 
images and the output de-identified images. Since most pipeline inaccuracies are fairly 
predictable and limited to specific data elements, these can be easily monitored. Therefore, a 
run of the MIDI pipeline, configured with a human-in-the-loop process, should be able to reliably 
capture any residual PHI/PII. Images will be flagged based on criteria such as pixels removed in 
the middle of images or names being identified and removed. The human-in-the-loop would be 
able to take these flagged images and do a manual review to identify any concerns with the 
submitted images. If deemed by the human-in-the-loop that the submitted images are too risky 
then they can be rejected and sent back to the submitter for further de-identification. This will 
substantially reduce the risk of PHI/PII leakage on datasets published in environments such as 
IDC. It will also greatly reduce the time it would take for a human to review a full dataset of 
images, reducing costs due to this decrease in manual processing. 

For the underlying Google Healthcare API, there remain a few areas of concern that should be 
addressed. First, there are a large number of fixes that have been implemented through the 
development of post-processing scripts. See above section on De-Identification Scripts for more 
details. These are all items that could be integrated into future releases of the Healthcare API 
itself and Google has added these items to their roadmap. As the Healthcare API releases 
updated versions with new possible configurations then the post-processing scripts can be 
phased out. This will improve the efficiency of the platform as the post-processing currently 
takes the longest time to complete. 

Second, since the Google Healthcare API is part of a service that is an ensemble of aggregated 
microservices, functions are not static and will see changes that should lead to improvements in 
future releases. However, after each new release of the Healthcare API, the MIDI pipeline 
should be regression tested before deploying the new release. The addition of version controls 
to Google’s Healthcare API would be highly beneficial to allow control over deployment of 
releases, to make switching to new releases an intentional part of the regular maintenance 
process. 

Third, the configurations that we use are still considered part of the Healthcare API’s beta 
release, even if they are publicly available. Eventually, they should be made part of a Generally 
Available (GA) release of the Healthcare API. 

All requests made to the Google team for improvements to the Healthcare API are provided 
below in section VI. Additional Information. 

A potential future production release of the MIDI pipeline at NCI, and indeed at NIH, could 
include the following services: (1) a verification service for curators (human-in-the-loop) of data 
repositories or data commons (e.g., IDC) to check for residual PHI/PII in submitted datasets 
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before publication; (2) a service for end users to check for PHI/PII in their medical imaging 
datasets or before publishing to the public. Both services should include an appropriate 
interactive user interface that allows these users to be the human-in-the-loop. 

Our most recent work also tested to a small extent Generative AI (GenAI) tools to identify 
PHI/PII in strings. Where the pipeline currently falls short, such as with patient identifiers and 
various acronyms, a GenAI tool could be utilized. Since the MIDI pipeline is built completely 
within the Google Cloud using Cloud Functions for execution, a GenAI based step using 
Google’s VertexAI environment could be configured and included in the MIDI pipeline to review 
data element text values that are considered high risk for PHI/PII. This could be incorporated 
currently as part of post-processing or as a future release by Google making GenAI an option in 
their Healthcare API. 

As for any deployments of products or services in a government IT environment, the MIDI 
platform will first need to obtain an Authority to Operate (ATO). This will require working closely 
with the NCI CBIIT Security Team (or the NIH equivalent).  

Finally, it would also be of use to develop an easy-to-use front-end so users do not need to be 
knowledgeable of the Google Cloud Console to run the MIDI pipeline. We envision a tool that 
allows users to connect to their GCP environment and invoke the necessary commands with a 
click of a button. In this tool, the user will be able to select from options that specify the actions 
they want to perform, for which tags, and for which data stored in Cloud Buckets. In addition, 
there will be sets of preconfigured configurations that match with the Confidentiality Profiles 
defined in DICOM Standard PS3.155. This service will help investigators quickly de-identify their 
data without needing to go through the hassle of accessing the GCP console or needing to do 
any terminal commands, making this tool much more accessible and reliable. In addition, this 
same interface could be used to analyze results of the de-identification process, making it a 
one-stop solution for end-to-end de-identification. This service could be provided as part of the 
account setup or as a stand alone CBIIT application, giving NCI users the ability to submit for an 
approved de-identification run on a shared MIDI pipeline account. 

In summary, the above suggestions outline specific steps that would now allow to take the MIDI 
pipeline to a production setting, thus making it usable for the desired use cases, specifically, as 
a tool to validate submissions to IDC, as long as the submitted data have been deidentified 
based on a consistent public protocol such as TCIAs, which our pipeline is tested against. 

VI. Additional Information 
Special Thanks To Everyone Who Supported MIDI Phase 4 
Granger Sutton, Keyvan Farahani, Nick Weber, David Clunie, Ulrike Wagner, Qinyan Pan, Scott 
Gustafson, Michael Rutherford, Linmin Pei, Tracy Nolan, Kirk Smith, Tanja Davidsen, Erica Kim, 
Dale Hawkins, Cheryl Corman, Patrice Walters, Dave Belardo, Antej Nuhanović, Juergen Klenk, 
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Ben Kopchick, Theresa Do, Kathryn Johnson, and Laura Opsahl-Ong. If anyone was missed, 
we apologize, but thank you for your support. 

GitHub Links 
Here we provide all code repository links found in GitHub for ease of reference. 

1. Cloud Functions scripts (includes Healthcare API configuration and post processing 
code) 

2. Post processing notebooks 
3. Validation Scripts 

MIDI Task Group 

Mission and Goals: 

● To document strategies and best practices in medical image de-ID for secondary sharing of 
imaging data with an emphasis on DICOM 

● To reach consensus on best practices 
● To disseminate findings 
● To provide input toward CBIIT/NCI and other ICs activities 
● To make recommendations on criteria and resources for performance evaluation of tools 
● To provide guidelines for image de-ID using automated vs. manual, cloud-based vs. local 

approaches, portability, scalability 

See also  the Report of the Medical Image De-Identification (MIDI) Task Group -- Best Practices 
and Recommendations24. 

Requests Made to Google For Improving Healthcare API 
Recommended Healthcare API 
Improvements 

Description of Improvement 

Improve Date Shifting Dates in yyyymmdd format that aren't in DA 
type elements aren't identified as dates. 
This should be changed. Also, do not allow 
for a zero shift. And potentially allow the 
user to input desired range of shift. 

Improve Patient ID detection Patient IDs are currently often not being 
identified and removed in both header and 
pixel data. The post-processing script finds 
Patient IDs in header data by searching for 
strings of integers of a length greater than 
6. We recommend the Healthcare API 
implement this, or some other more 

https://github.com/CBIIT/MIDI_processing_script/tree/main/MIDI_gcp_script
https://github.com/CBIIT/MIDI_processing_script/tree/main
https://github.com/CBIIT/MIDI_validation_script
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advanced form of patient ID identification. 

Improve Acronym Detection 
(potentially with use of a white-
list/black-list) 

Hospital acronyms and some person initials 
are currently not being identified and 
removed by the Healthcare API. The post 
processing script mostly fixes this by using 
regular expressions (ex: ‘at XXX’ or ‘by 
XX’). However, allowing the user to input a 
custom white or black list could also help 
improve this issue. 

Update Healthcare API to correctly 
handle private data elements. 

Private Creator elements, which if changed 
in any way result in the loss of all other 
private elements, are sometimes being 
altered when the algorithm identifies 
possible PHI in them. It is currently 
challenging to specify that Private Creator 
elements be kept, since there is a large 
range of possible hexadecimal tags that 
could represent Private Creator, and 
Google does not have a way of specifying 
private elements by name.  
Also, private data elements require the 
corresponding Private Creator to be 
correctly identified. However, the 
Healthcare API only allows users to be 
specified by tag name or tag hexadecimal. 

Improve general person name 
detection. Uncommon names are 
often missed, or sometimes only 
partially de-identified (EX: Sierra Case 
is changed to just Case) 

Improve general person name 
detection. Uncommon names are often 
missed, or sometimes only partially de-
identified (EX: Sierra Case is changed 
to just Case) 

Versioning control It would be very difficult to use this in 
production without the guarantee that 
the algorithm’s behavior isn’t changing 
without our ability to test those 
changes. The user should at least be 
notified when major changes occur so 
they can retest the pipeline. 

Allow user to change AI temperature Allow the user to change the AI 
temperature, either on the entire de-
identification tool or specific Info Types. 
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For instance, if the dataset being de-
identified has many uncommon patient 
names, the user could turn the 
temperature up on the Person Name 
infotype so that the Healthcare API 
would widen its net for Person Name 
de-identification. 

Implement a flag for human review 
feature 

In cases where PHI is hard to 
automatically remove without also 
removing lots of non-PHI information 
(non-traditional date formats, patient 
IDs, acronyms etc), the Healthcare API 
could be configured to flag these kinds 
of potential cases for human review. 
Potentially allow the user to specify 
things at a specific confidence interval 
be flagged (ex: if the AI is 70% sure 
that a string is a person name, this 
should be flagged). 
 

Group 0x0002 file meta data should 
be removed and regenerated in a 
specific way, not just de-identified 

The way it is done now is contrary to 
the Dicom Standard. For instance, 
there are certain group 0x0002 
elements that need to be updated to 
reflect the de-identification tool and 
practices used. 
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Appendix 

Medical Image De-Identification (MIDI) Standard 
Operation Procedure 
Update: 11/27/2024 
This article serves as a Standard Operating Procedure (SOP) for running the Medical Image 
De-Identification (MIDI) Pipeline hosted in the CBIIT managed Google Cloud Platform (GCP) 
environment. The audience of this SOP are members with access to the MIDI pipeline and 
approved to run the pipeline. 

Requirement/Prerequisites 
• The current GCP account the pipeline is setup in is nih-nci-cbiit-midi-dev2 

o To access the MIDI pipeline hosted on CBIIT’s GCP platform, users must have 
access to GCP and the 
nih_nci_cbiit_imaging_informatics_midi_dev_folder_admin@nih.gov distribution 
list. 

o For access, a request can be made through a Google Cloud Service Request. 
• User will require the following IAM permissions either through the user list or a service 

account: 
o Storage Admin 
o Cloud Functions Invoker 
o Cloud Run Invoker 
o Vertex AI Service Agent 

• The required APIs that need activated: 
o Cloud Run Functions 
o Healthcare API 
o Bigquery 

Getting Started – Account Setup 
If you are an NCI employee looking to deploy this within the NCI Cloud Environment, please 
submit a consultation request using the Google Cloud Service Request. The Cloud Engineering 
team will assist you in setting up the environment with the listed above permissions and 
required APIs. 

If you are using a personal account, please proceed to Cloud Computing Services | Google Cloud 
to setup a free account. If you are new to GCP, we highly recommend you take some tutorials to 
familiarize yourself with GCP console and terminology. In your personal account you will have 
administrator privileges and will be able to proceed to activating the necessary APIs. Otherwise, 

mailto:nih_nci_cbiit_imaging_informatics_midi_dev_folder_admin@nih.gov
https://service.cancer.gov/ncisp?id=nci_sc_cat_item&sys_id=1d7996f61b818910f360a681f54bcb31
https://service.cancer.gov/ncisp?id=nci_sc_cat_item&sys_id=1d7996f61b818910f360a681f54bcb31
https://cloud.google.com/?hl=en
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you will need the proper IAM permissions listed in the Requirements section. To activate APIs, click 
the hamburger button in the top left and select “View All Products”. Then find “Cloud Run 
functions” in the Serverless section and select it. It is also recommended to pin the product for 
easy access later. Then select the “Enable” button to enable the product. Proceed to do this with 
the “Healthcare API” and “Bigquery”. 

The final step is to copy the pipeline functions in to Cloud Run.  

1. In “Cloud Run functions” select “Create Function”. Give function a name such as De-
identification.  

2. Select the Region you would like it to run in. For NCI, it should use us-east4 (Northern 
Virginia).  

3. Trigger will be HTTPS, though other triggers can be explored.  
4. In “Runtime”, select the necessary settings for Memory and CPU. We recommend with 1GB 

memory and 1 CPU to start with. This can be edited in the future as needed.  
5. Set “Timeout” to the maximum setting of 3600 seconds.  

a. This determines how long a job can run in Cloud Functions. Since the process can 
take a long time, we maximize this. In addition, this determines how you will need to 
split up your jobs depending on number of files you are de-identifying. 

6. Concurrency should be 1 
a. This determines how many requests can run on the same instance. To run in 

parallel, we want this to be 1 so that new instances are spun up instead of 
attempting to run on the same instance.  

7. “Autoscaling” we recommend to have a minimum of 0 and a maximum of 100.  
a. This allows 100 instances to run at the same time for this function.  

8. “Runtime Service Account” should be the accounts service account that has the minimum 
permissions to run the pipelines and the user should also have permission to run as the 
service account.  

a. More details about service accounts can be found here: 
https://cloud.google.com/iam/docs/service-account-overview. 

Click next to go to Code. Select a version of Python, anything Python 3.8 or greater will work. Copy 
over main.py, requirements.txt, and script.py. In main.py make the necessary edits to “project” and  
“location”. Other variables are described below. The requirements.txt and script.py do not need to 
be edited. Please proceed below to run the pipeline. 

Procedure 
The pipeline is run through two GCP Cloud Run Functions. See below for more information. 

1. De-identification 
2. Post-processing 

 The functions take the process through linear steps of: 

https://cloud.google.com/iam/docs/service-account-overview.
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1. Storage   
2. Heatlhcare DICOM Dataset/Datastore  
3. Healthcare De-Identification  
4. De-identified Healthcare DICOM Dataset/Datastore and FHIR store  
5. De-identified Storage 
6. Post-processing 

Steps 

Bucket Creation 

1. Go to Cloud Storage in the GCP console 
2. DICOM data needs to be uploaded into a bucket. At NCI, created buckets should be in a 

single region in us-east4. 
a. Data can be uploaded by dragging and dropping or through an API command. 
b. For purposes of this SOP, we will use the bucket midi-storage-input 

3. DICOM output bucket needs to be created. 
a. For purposes of this SOP, we will use the bucket midi-storage-output 

4. FHIR output bucket needs to be created. 
a. For purposes of this SOP, we will use the bucket fhir_output 

Cloud Run Function 1: De-Identification using Healthcare API 

1. Go to Cloud Run functions in the GCP console 
2. Select de-identification-v1 
3. Go to the Source tab 
4. In the main.py file check that all variables are correct 

 

a. project: Name of the GCP project 
b. location: Location of your buckets and Healthcare stores 

i. location should be ‘us-east4’ 
c. source_dataset: Name of Healthcare datastore you want created to upload raw 

data 
i. Cannot be already existing 
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d. destination_dataset: Name of Healthcare datastore de-identified data will be 
exported to 

i. Cannot already be existing 
e. source_bucket: Bucket created in Bucket Creation 2 where raw data was 

uploaded 
i. The ‘/**’ at end of bucket takes all files in bucket for de-identification 
ii. You can add a path to file or path to folder in bucket to not take all files 

1. Ex. source_bucket = ‘midi-storage-input/patient1/**’ 
f. destination_bucket: Bucket created in Bucket Creation 3  
g. fhir_destination_bucket: Bucket you want fhir output to be exported to 
h. fhir_prefix: Folder the fhir output will be placed in in the fhir_destination_bucket 
i. fhir_bucket: Ignore 
j. fhirname: Healthcare FHIR store created when script is run 

i. Cannot already be existing 
k. mapping_output: Folder inside fhir_destination_bucket where UID mapping file 

will reside 
5. Variables can be edited by selecting EDIT 
6. After variables are correct, select SAVE AND REDEPLOY 

a. This will take a couple of minutes 
7. To run the pipeline open the Cloud Shell or a terminal in an AI Notebook 
8. Run the following curl command: 

curl -m 3610 -X POST https://us-east4-nih-nci-cbiit-midi-dev2.cloudfunctions.net/de-
identification-v1 \ 
-H "Authorization: bearer $(gcloud auth print-identity-token)" \ 
-H "Content-Type: application/json" \ 
-d '{ 
  "name": "Hello World" 
}' 
 

9. This can be found in the Testing tab under CLI test command. 
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10. You can follow the progress of the script under the Logs tab 

 
11. After successful completion, check the destination buckets for the final outputs 
12. Files can be checked by navigating to a Jupyter Notebook environment. 

a. VertexAI > Workbench > User-Managed Notebooks 
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b. In the analysis-midi-phase4 notebook, we have a demo.ipynb notebook that 

showcases a quick way to look at some of the images using pydicom 

 

Cloud Run Function 2: Post Processing Script 

1. Go to Cloud Run functions in the GCP console 
2. Select post-processing-v1 
3. Go to the Source tab 
4. In the main.py file check that all variables are correct 
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a. bucketname: Bucket where your results are from de-identification-v1 run 
b. folder_in: Folder in bucket where files are located from de-identification-v1 run 
c. folder_out: Name of folder you want postprocessing results to end up in 

5. Variables can be edited by selecting EDIT 
6. After variables are correct, select SAVE AND REDEPLOY 

a. This will take a couple of minutes 
7. To run the pipeline open the Cloud Shell or a terminal in an AI Notebook 
8. Run the following curl command: 

curl -m 3610 -X POST https://us-east4-nih-nci-cbiit-midi-dev2.cloudfunctions.net/post-
processing-v1 -H "Authorization: bearer $(gcloud auth print-identity-token)" -H "Content-Type: 
application/json" -d '{ 

  "name": "Hello World", "filestart": "0", "fileend": "1" 

}' 

9. Edit the filestart and fileend variables to match with which files you want to use. This can 
be used to parallelize the runs. For example: If you have 500 files, you can run in one 
terminal "filestart": "0", "fileend": "249" and in another terminal "filestart": "250", "fileend": 
"500" to complete the task twice as fast. 
a. filestart: 0 – Integer that determines which file to start with 
b. fileend: 1 – Integer that determines which file to end with 

10. You can follow the progress of the script under the Logs tab 
11. Check files in bucketname/folder_out to make sure all files are present. 

Code Deep Dive 
The code is split into 3 python scipts: main.py, script.py, and requirements.txt. 
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main.py 

 

• This code is where all the variables for bucket names and datasets are defined and are 
found near the top after the package imports. 

• The code then follows through a step-by-step process to create the necessary datasets 
and dicom/fhir stores. It then imports data from the defined source bucket. The 
deidentify_dataset() function then runs the de-identification script that calls the 
Healthcare API function. 

• Data is then exported to the de-identification bucket and fhir output bucket. 
• A UID mapping is created and put in the fhir output bucket 
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script.py 

 

script.py contains all the functions that are called by main.py. 

The main part of the script is the deidentify_dataset function. This contains the Healthcare API 
call that is configured to this project. It is important to note the structure of this request under the 
dicomTagConfig options: 

‘dicomTagConfig’ : { 

 “actions” : [ 

  {“queries”: [ 

   ‘List of DICOM tags’, ‘Ex. 00091008’, ‘DT’ 

   ], 

  “action”: {} 

  } 
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 ] 

} 

The red is what is customized. Actions can include: keepTag, removeTag, resetTag, 
cleanTextTag, cleanImageTag, recurseTag, and regenUidTag. In addition, we specify a profile 
type of DEIDENTIFY_TAG_CONTENTS’ and that we are collecting the metadata of changed 
files through the fhir store by activating the operationMetadata option. More details about all 
these actions can be found here: https://cloud.google.com/healthcare-api/docs/how-tos/dicom-
deidentify-dicomtagconfig  

 

 

https://cloud.google.com/healthcare-api/docs/how-tos/dicom-deidentify-dicomtagconfig
https://cloud.google.com/healthcare-api/docs/how-tos/dicom-deidentify-dicomtagconfig

	I. Overview
	I.a. History of and Need for MIDI, Purpose of this Document
	I.b Objective

	II. Background
	II.a Timeline
	II.b Previous Phases of the MIDI Project
	II.c DICOM Overview
	What is DICOM
	DICOM Attributes

	II.d Data Sets
	Synthetic MIDI Dataset
	MIDI-B Test Dataset
	Source Dataset
	CTP Dataset
	UAMS Dataset

	II.e Google Isolator

	III. Methods
	II.a Phase 4 GCP Pipeline Architecture
	II.b De-Identification Scripts
	Healthcare API Commands
	Post Processing Scripts
	Decisions Made

	II.c Evaluation
	MIDI 1.1 Dataset Run
	UAMS Curated Dataset Run
	Source Dataset Run


	IV. Results & Discussion
	IV.a Pixel Data
	Run using MIDI-B Validation Dataset comparing MIDI Pipeline output with Answer Key
	Run using CTP Dataset comparing MIDI Pipeline output with UAMS Curated Dataset
	Run using Source Dataset comparing MIDI Pipeline output with Source Dataset

	IV.b Header Data
	Run using MIDI-B Validation Dataset comparing MIDI Pipeline output with Answer Key
	Run using MIDI-B Test Dataset comparing MIDI Pipeline output with answer key
	Run using Source Dataset comparing MIDI Pipeline output with UAMS Curated Dataset
	Run using CTP Dataset comparing MIDI Pipeline output with UAMS Curated Dataset

	IV.c Dropped Files
	IV.d Run Performance
	IV.e Cost Analysis

	V. Future Considerations & Recommendations
	VI. Additional Information
	Special Thanks To Everyone Who Supported MIDI Phase 4
	GitHub Links
	MIDI Task Group
	Requests Made to Google For Improving Healthcare API

	References
	Appendix
	Medical Image De-Identification (MIDI) Standard Operation Procedure
	Requirement/Prerequisites
	Getting Started – Account Setup
	Procedure
	Steps
	Bucket Creation
	Cloud Run Function 1: De-Identification using Healthcare API
	Cloud Run Function 2: Post Processing Script


	Code Deep Dive
	main.py
	script.py



