Investigating CRDC AI Data Readiness (AIDR)

Emily J. Greenspan, Ph.D. October 17, 2024

Artificial Intelligence (AI) A powerful tool that can be used across the cancer research continuum

CRDC for Enabling AI in Cancer Research

Data-centric Al

 Characterize, evaluate, and monitor the data underlying AI models

Al Data Readiness (AIDR)

 Expands FAIR principles to make data accessible for use in AI future applications

Data pre-processing for AI

• Labor intensive and inhibits democratization

https://www.vanderschaar-lab.com/dc-check/what-is-data-centric-ai/

Evaluating CRDC AIDR

- Current Data Commons Harmonization Activities
 - File standards
 - Data/Metadata standards
 - Uniform analytic pipelines
- Cross CRDC Harmonization In Progress
 - Improving data model & metadata
 - Unified portal for search

Develop metrics

- Engage Subject Matter Experts
- Perform literature review
- Conduct interviews with CRDC partners

Engage the community

- RFI to obtain AI use cases
- Challenge to obtain recommendations on CRDC AI Data Readiness

Report Findings & Recommendations

 Specific action items to improve CRDC AI Data Readiness in current data and future data submissions

Provide Best Practices

- To achieve high AI Data Readiness
- Data Governance and Documentation, Metadata and Standards, & Data Quality

Request for Information Summary

NCI CRDC AI use cases to inform an assessment of data readiness

- Purpose: Solicit broad community input on
 - Al-readiness of data across multiple CRDC components
 - Al use cases for a CRDC AIDR Challenge
- Example Questions:
 - Identify the AI use case(s) that leverages CRDC or other cancer data
 - Describe high priority data types/elements for the use case
 - Describe any bias that you are aware of in the data for the use case
 - Describe data barriers/challenges encountered & improvement areas
- Responses:
 - Acellus Health, Certara, FDA, Jackson Lab & LBNL, MD Anderson, Northeastern, UMass Amherst, UPenn, Velsera

AND

RFI Use Cases for Challenge

#	Category	Purpose: "Build an AI/ML model to"
1	Cancer Risk	Assess the risk of an individual developing a specific cancer type
2	Prevention	Distinguish early/pre-cancer from advanced disease
3	Diagnosis	Distinguish amongst different cancer subtypes
4	Diagnosis	Classify cancer cells versus healthy cells in a specific tissue
5	Prognosis	Predict survival in metastatic cancer
6	Prognosis	Predict cancer recurrence
7	Prognosis	Assess the risk of a tumor progression from benign to malignant, localized to metastasized, or one stage to another
8	Treatment	Predict the efficacy of a single or combination therapy
9	Treatment	Understand the relationship between the tumor microenvironment or immune response and cancer progression

AIDR Challenge Process

Seven Bridges Cancer Genomics Cloud

- Challenge-specific workbench for participants
- \$300/1000 cloud credit per participant/team

Challenge.gov: <u>https://www.challenge.gov/?challenge=ai-data-readiness-nci-challenge</u>

AIDR Challenge Judging Criteria

Data-centric challenge, the AI model(s) were assessed for functionality not their performance quality

AIDR Challenge Engagement

Registration Stats

- 50 groups registered to participate
- Submission Stats
 - Data accessed from 4 Data Commons
 - All teams used open access data
 - Single Modal = 14 projects

- 19 projects submitted for judging
- Multi-Modal = 5 projects
 - 2 used data from both GDC and PDC
 - 3 used data from a single Data Commons

AIDR Challenge Winners

Winning submissions satisfied challenge requirements and provided the most in-depth and insightful feedback regarding CRDC AI Data Readiness

\$50,000 Total Prizes				
Single Modal Data	Multi-Modal Data			
<u>1st Place: \$15,000</u>	<u>1st Place: \$20,000</u>			
Ruvos Health (Entity)	Abhishek Jha (Team)			
Jennifer Blasé (Lead)	Elucidata			
<u>2nd Place: \$5,000</u>	2nd Place: \$10,000			
Agnes McFarlin (Individual)	BAMF Health (Entity)			
No Affiliation	Jeff Van Oss (Lead)			

AIDR Winners – Single Modal Data ½

Agnes McFarlin (Individual)

No Affiliation

Use Case: Identify cancerous lung nodules in DICOM images without the presence of annotated slides for reference

Study: National Lung Screening Trial **Data Types:** CT DICOM images **Commons:** IDC **AI Data Readiness Metrics:**

Data class imbalance, labeling, missingness, diversity, anonymization

- Co-locate metadata with data and patient records
- Provide more instructions on how to use the REST API for specific queries
- Remove records of non-existent patients

AIDR Winners – Single Modal Data

Jennifer Blasé (Lead)

Use Case: Gene expression-based prediction of treatment response in ovarian cancer

Commons: GDC **Study:** TCGA Ovarian **Data Types:** RNA-Seq, Clinical Biospecimen **AI Data Readiness Metrics:**

• Data quality, accessibility, quantity

- Documentation on how to process the files
- Create Unified Modeling Language diagram showing the database schemas
- Provide examples of queries and use cases

AIDR Winners – Multi-Modal Data ½

BAMF Health (Entity)

Jeff Van Oss (Lead)

Use Case: Predict Von Hippel-Lindau (VHL) mutations in kidney tumors using radiomic features

Commons: GDC, IDC **Studies:** TCGA Kidney **Data Types:** CT, BAM, Somatic mutation **AI Data Readiness Metrics:**

• Data comprehensiveness, completeness, size, variety of sources

- Implement and enforce robust data quality assurance processes
- Standardize data formats, integrate relevant metadata for comprehensiveness
- Continuously monitor data quality and incorporate feedback loop

AIDR Winners – Multi-Modal Data

Abhishek Jha (Team)

Elucidata

Use Case: Distinguish primary tumor from normal solid tissue in lung squamous cell carcinoma using transcriptomics and proteomics data

Commons: GDC, PDC Studies: CPTAC Lung SCC Data Types: RNA-Seq, Proteomics Al Data Readiness Metrics:

• Access, class imbalance, missing data, confounding variables, normalization

- Provide download on a per sample basis, a consistent schema for metadata
- Add more case/sample identifiers in file names and API query results
- Develop a common portal for querying and visualizing data across DCs

RFI and Challenge Recommendations

- Allow download of smaller subsets of data files*
- Co-locate metadata with data and patient records
- Provide examples of AI queries and use cases
- Adopt a federated learning framework for integration of de-identified CRDC data with multi-institutional data that provides clinical context

Across Data Commons

- Standardize data formats, naming conventions, and metadata schemas*
- Develop a common portal for querying and visualizing data*
- Adopt a schema crosswalk for discovery between different metadata standards*

Across NCI Cloud Resources

• Develop "resource packages" with data/toolsets for specific research activities

* Already in progress

200

Acknowledgements

- Booz Allen AIDR Team
 - Carolyn Hetzer
 - Abdullah Awaysheh
 - Lucy Han
 - Elise Berning
 - Anna Fernandez
 - Zeke Maier
 - Nirmal Agarwal
 - Jason DeChancie

- CBIIT Federal Team
 - Emi Casas-Silva
 - Granger Sutton
- NIH Office of Data Science Strategy
- RFI AIDR Respondents
- CRD AIDR Challenge
 Participants & Winners

